论文标题

室内环境数据时间序列使用自动编码器神经网络重建

Indoor environment data time-series reconstruction using autoencoder neural networks

论文作者

Liguori, Antonio, Markovic, Romana, Dam, Thi Thu Ha, Frisch, Jérôme, van Treeck, Christoph, Causone, Francesco

论文摘要

随着建筑物中安装的仪表数量的增加,越来越多的数据时间序列可用于开发数据驱动的模型以支持和优化建筑物的操作。但是,建筑物数据集通常以错误和缺失值的特征,这是最近研究的主要限制因素,这些因素是拟议模型的主要限制因素。由于需要解决构建操作中缺少数据的问题的动机,这项工作提出了一种以数据为导向的方法来填补这些空白。在这项研究中,对三个不同的自动编码器神经网络进行了培训,可以在德国亚肯的办公大楼收集的数据集中重建缺失的短期室内环境数据时间序列。这包括在2014年至2017年的84个不同房间的四年监测活动中。这些型号适用于从室内自动化中获得的不同时间序列,例如室内空气温度,相对湿度和$ co_ {2} $数据流。结果证明,所提出的方法的表现要优于经典数值方法,并且它们的平均RMSE分别为0.42°C,1.30%和78.41 ppm,从而重建了相应的变量。

As the number of installed meters in buildings increases, there is a growing number of data time-series that could be used to develop data-driven models to support and optimize building operation. However, building data sets are often characterized by errors and missing values, which are considered, by the recent research, among the main limiting factors on the performance of the proposed models. Motivated by the need to address the problem of missing data in building operation, this work presents a data-driven approach to fill these gaps. In this study, three different autoencoder neural networks are trained to reconstruct missing short-term indoor environment data time-series in a data set collected in an office building in Aachen, Germany. This consisted of a four year-long monitoring campaign in and between the years 2014 and 2017, of 84 different rooms. The models are applicable for different time-series obtained from room automation, such as indoor air temperature, relative humidity and $CO_{2}$ data streams. The results prove that the proposed methods outperform classic numerical approaches and they result in reconstructing the corresponding variables with average RMSEs of 0.42 °C, 1.30 % and 78.41 ppm, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源