论文标题

LAAT:局部对齐的蚂蚁技术,用于发现多个密度的多个微弱的低维结构

LAAT: Locally Aligned Ant Technique for discovering multiple faint low dimensional structures of varying density

论文作者

Taghribi, Abolfazl, Bunte, Kerstin, Smith, Rory, Shin, Jihye, Mastropietro, Michele, Peletier, Reynier F., Tino, Peter

论文摘要

减少维度和聚类通常被用作许多复杂机器学习任务的初步步骤。噪声和离群值的存在可能会恶化此类预处理的性能,从而极大地损害了后续分析。在流形学习中,几项研究指出了在密度大大高于噪声时的密度大大高时消除接近结构的背景噪声或噪声的解决方案。但是,在包括天文数据集在内的许多应用中,密度随埋在嘈杂背景的流形而变化。我们提出了一种基于蚂蚁菌落优化的思想,在存在噪声的情况下提取歧管的新方法。与现有的随机步行解决方案相反,我们的技术捕获了与歧管的主要方向局部对齐的点。此外,我们从经验上表明,蚂蚁信息素的生物学启发的配方增强了这种行为,使其能够恢复嵌入极为嘈杂的数据云中的多个歧管。与几个合成和真实数据集(包括宇宙学量的N体仿真)相比,证明了与最新的降噪方法相比,算法性能与降噪方法相比。

Dimensionality reduction and clustering are often used as preliminary steps for many complex machine learning tasks. The presence of noise and outliers can deteriorate the performance of such preprocessing and therefore impair the subsequent analysis tremendously. In manifold learning, several studies indicate solutions for removing background noise or noise close to the structure when the density is substantially higher than that exhibited by the noise. However, in many applications, including astronomical datasets, the density varies alongside manifolds that are buried in a noisy background. We propose a novel method to extract manifolds in the presence of noise based on the idea of Ant colony optimization. In contrast to the existing random walk solutions, our technique captures points that are locally aligned with major directions of the manifold. Moreover, we empirically show that the biologically inspired formulation of ant pheromone reinforces this behavior enabling it to recover multiple manifolds embedded in extremely noisy data clouds. The algorithm performance in comparison to state-of-the-art approaches for noise reduction in manifold detection and clustering is demonstrated, on several synthetic and real datasets, including an N-body simulation of a cosmological volume.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源