论文标题

具有高分辨率卫星图像和公平地面真相的非正式定居点中的人口映射

Population Mapping in Informal Settlements with High-Resolution Satellite Imagery and Equitable Ground-Truth

论文作者

Klemmer, Konstantin, Yeboah, Godwin, de Albuquerque, João Porto, Jarvis, Stephen A

论文摘要

我们建议使用高分辨率卫星图像对低收入城市地区密集,非正式定居点的人口估计(称为“贫民窟”)的人口估算提出一个可普遍的框架。精确的人口估计是政府当局和非政府组织的有效资源分配的关键因素,例如在医疗紧急情况下。我们利用公平的地面数据,该数据与当地社区合作收集:通过培训和社区地图,当地人口贡献了他们独特的领域知识,同时还可以维护代理商的数据。这种做法使我们能够避免将潜在的偏见传递到建模管道中,这可能是由于不太严格的地面方法引起的。在机器学习社区中正在进行的讨论方面,我们将方法与我们的方法相关,旨在使现实世界的机器学习应用程序更具包容性,公平和负责。由于资源密集的基础真相生成过程,我们的培训数据有限。我们提出了一个网格的人口估计模型,可以灵活且可自定义的空间决议。我们利用预先训练和微调视觉网络来克服数据稀疏性,测试尼日利亚三个实验地点的管道。我们的发现突出了将通用基准模型转移到现实世界任务的困难。我们讨论了这一点,并提出了前进的一步。

We propose a generalizable framework for the population estimation of dense, informal settlements in low-income urban areas--so called 'slums'--using high-resolution satellite imagery. Precise population estimates are a crucial factor for efficient resource allocations by government authorities and NGO's, for instance in medical emergencies. We utilize equitable ground-truth data, which is gathered in collaboration with local communities: Through training and community mapping, the local population contributes their unique domain knowledge, while also maintaining agency over their data. This practice allows us to avoid carrying forward potential biases into the modeling pipeline, which might arise from a less rigorous ground-truthing approach. We contextualize our approach in respect to the ongoing discussion within the machine learning community, aiming to make real-world machine learning applications more inclusive, fair and accountable. Because of the resource intensive ground-truth generation process, our training data is limited. We propose a gridded population estimation model, enabling flexible and customizable spatial resolutions. We test our pipeline on three experimental site in Nigeria, utilizing pre-trained and fine-tune vision networks to overcome data sparsity. Our findings highlight the difficulties of transferring common benchmark models to real-world tasks. We discuss this and propose steps forward.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源