论文标题
通过单调功能匹配数据驱动的快照校准
Data-Driven Snapshot Calibration via Monotonic Feature Matching
论文作者
论文摘要
双曲线方程的快照矩阵具有缓慢的奇异值衰减,导致降低的模型效率低下。我们基于通过计算转换的空间域上的快照或所谓的快照校准/转换来诱导更快的奇异值衰减的想法。我们对涉及冲击碰撞,冲击稀有粉丝碰撞,冲击形成等问题特别感兴趣。对于此类问题,我们提出了一种可实现的算法,以使用单调特征匹配来计算空间变换。我们将不连续性和扭结视为特征,并且通过仔细划分参数域,我们确保空间变换具有从理论和实现的角度来看的属性。我们使用这些属性来证明我们的方法会导致所谓的校准歧管的快速m宽度衰减。我们做出的一个关键观察是,由于校准,M宽度不仅取决于M,而且还取决于完整模型的准确性,这与不需要校准的椭圆形和抛物线问题相反。我们提出的方法仅需要解决方案快照,而不需要基础的部分微分方程(PDE),因此是数据驱动的。我们执行几个数值实验来证明我们方法的有效性。
Snapshot matrices of hyperbolic equations have a slow singular value decay, resulting in inefficient reduced-order models. We develop on the idea of inducing a faster singular value decay by computing snapshots on a transformed spatial domain, or the so-called snapshot calibration/transformation. We are particularly interested in problems involving shock collision, shock rarefaction-fan collision, shock formation, etc. For such problems, we propose a realizable algorithm to compute the spatial transform using monotonic feature matching. We consider discontinuities and kinks as features, and by carefully partitioning the parameter domain, we ensure that the spatial transform has properties that are desirable both from a theoretical and an implementation standpoint. We use these properties to prove that our method results in a fast m-width decay of a so-called calibrated manifold. A crucial observation we make is that due to calibration, the m-width does not only depend on m but also on the accuracy of the full order model, which is in contrast to elliptic and parabolic problems that do not need calibration. The method we propose only requires the solution snapshots and not the underlying partial differential equation (PDE) and is therefore, data-driven. We perform several numerical experiments to demonstrate the effectiveness of our method.