论文标题

新的阳性插值算法的数值测试

Numerical Testing of a New Positivity-Preserving Interpolation Algorithm

论文作者

Ouermi, T. A. J., Kirby, Robert M., Berzins, Martin

论文摘要

许多计算建模算法的重要组成部分是一种插值方法,可保留插值函数的阳性。本报告描述了一种新的阳性算法的数值测试,该算法被设计为从一个在一个网格上定义到不同空间网格的解决方案插值时使用的。这项工作的激励应用是数值天气预测(NWP)代码,该代码使用光谱元件网格离散化的动态核心和笛卡尔张量产品网格,以评估其物理例程。光谱元件网格的这种耦合,它使用不均匀间隔的正交/搭配点,以及均匀的笛卡尔网格,结合了在这些网段之间移动时保持积极性的愿望,这是我们的工作。在一个或多个空间维度的一系列测试问题上使用的几种典型算法评估了这种新方法。获得的结果表明,新方法在观察到的准确性方面具有竞争力,同时保留了插值函数的基本阳性。

An important component of a number of computational modeling algorithms is an interpolation method that preserves the positivity of the function being interpolated. This report describes the numerical testing of a new positivity-preserving algorithm that is designed to be used when interpolating from a solution defined on one grid to different spatial grid. The motivating application for this work was a numerical weather prediction (NWP) code that uses a spectral element mesh discretization for its dynamics core and a cartesian tensor product mesh for the evaluation of its physics routines. This coupling of spectral element mesh, which uses nonuniformly spaced quadrature/collocation points, and uniformly-spaced cartesian mesh combined with the desire to maintain positivity when moving between these meshes necessitates our work. This new approach is evaluated against several typical algorithms in use on a range of test problems in one or more space dimensions. The results obtained show that the new method is competitive in terms of observed accuracy while at the same time preserving the underlying positivity of the functions being interpolated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源