论文标题
低密度平价检查代码及其某些后果的稳定性
The Stability of Low-Density Parity-Check Codes and Some of Its Consequences
论文作者
论文摘要
我们研究了低密度平价检查(LDPC)代码在块或位最大$ \ textit {a posteriori} $(MAP)解码下的稳定性,其中传输发生在二进制输入无内存输出对称对象通道上。我们的研究源于考虑在低复杂性解码算法下构建通用能力成绩的代码的考虑,在该算法中,普遍性是指我们正在考虑具有相等能力的渠道家族。例如,例如,shokrollahi的右键序列和luby $ \ textit {et al} $的重尾泊松序列。在二元擦除通道(BEC)上进行传播时,这两个序列都在信念传播(BP)的情况下可以证明能力方面。 在本文中,我们表明,在BP解码下,许多现有的LDPC代码现有能力实现序列不是通用的。我们透露,显示这种非大学性结果的关键是由基础代码的稳定性决定的。更具体地说,对于有序且完整的通道家族以及一系列LDPC代码集合,我们确定了与之相关的稳定性阈值,这进一步导致了足够的条件,因此在BP解码下该序列并不普遍。此外,我们表明相同的稳定阈值也适用于块或位图解码。我们介绍了稳定性如何确定相应的块或位图映射阈值上的上限,从而揭示了稳定性阈值的操作意义。
We study the stability of low-density parity-check (LDPC) codes under blockwise or bitwise maximum $\textit{a posteriori}$ (MAP) decoding, where transmission takes place over a binary-input memoryless output-symmetric channel. Our study stems from the consideration of constructing universal capacity-achieving codes under low-complexity decoding algorithms, where universality refers to the fact that we are considering a family of channels with equal capacity. Consider, e.g., the right-regular sequence by Shokrollahi and the heavy-tail Poisson sequence by Luby $\textit{et al}$. Both sequences are provably capacity-achieving under belief propagation (BP) decoding when transmission takes place over the binary erasure channel (BEC). In this paper we show that many existing capacity-achieving sequences of LDPC codes are not universal under BP decoding. We reveal that the key to showing this non-universality result is determined by the stability of the underlying codes. More concretely, for an ordered and complete channel family and a sequence of LDPC code ensembles, we determine a stability threshold associated with them, which further gives rise to a sufficient condition such that the sequence is not universal under BP decoding. Furthermore, we show that the same stability threshold applies to blockwise or bitwise MAP decoding as well. We present how stability can determine an upper bound on the corresponding blockwise or bitwise MAP threshold, revealing the operational significance of the stability threshold.