论文标题
算术在琐碎的田野上及其应用
Arithmetic over trivially valued field and its applications
论文作者
论文摘要
在某些结果上,对算术在微不足道的领域进行了研究,我们发现了其在阿氏曲线上的Arakelov几何形状的应用。我们证明了沿着半空比亚分离的算术$χ$ - 体积的连续性的部分结果。此外,我们给出了算术希尔伯特 - 塞缪尔功能的上限估计。
By some result on the study of arithemtic over trivially valued field, we find its applications to Arakelov geometry over adelic curves. We prove a partial result of the continuity of arithmetic $χ$-volume along semiample divisors. Moreover, we give a upper bound estimate of arithmetic Hilbert-Samuel function.