论文标题

某些谐波映射的Bohr不平等

The Bohr inequality for certain harmonic mappings

论文作者

Allu, Vasudevarao, Halder, Himadri

论文摘要

令$ \ $是分析性的({\ it i.e,}一对一个),in $ \ mathbb {d}:= \ {z \ in \ mathbb {c}:| | z | | <1 \} $,因此与$ ϕ(\ mathbb {d})$相关,ats syace at syt at star at star ot at star of star at star of star of STAR $ ϕ(0)= 1,$和$ ϕ'(0)> 0 $。一个函数$ f \ in \ Mathcal {c}(ϕ)$如果$ 1+ zf''(z)/f'(z)/f'(z)\ prec ϕ(z),$和$ f \ in \ Mathcal {c} _ {c} _ {c} _ {c}(c}(ϕ)$ IF $ 2(zf'(zf'(z)'(z) \ for $ z \ in \ mathbb {d} $ for $ z \。在本文中,我们考虑$ \ MATHCAL {HC}(ϕ)$和$ \ MATHCAL {HC} _ {C} _ {C}(ϕ)$由谐波映射$ f = h+ f = h+ \\ overline {g} $的form $$ $ h $ a_ {n} z^{n} \ quad \ mbox {and} \ quad g(z)= \ sum \ limits_ {n = 2}^{\ int} $ \ MATHCAL {C} _ {C}(ϕ)$,随着扩张$ g'(z)=αzh'(z)$和$ |α| <1 $。使用Bohr现象进行从属类\ Cite [Lemma 1] {Bhowmik-2018},我们找到Radius $ r_ {f} <1 $,使得bohr不平等$ | z | z |+sum_ |+\ sum_ {n = 2} \ leq d(f(f(0),\ partial f(\ mathbb {d}))$$适用于$ | z | = r \ leq r_ {f} $ for类的$ \ mathcal {hc {hc}(hc}(hc}(ϕ)$和$ \ mathcal {hc {hc} _ {c} _ {c}(ac})$。由于这些结果,我们在上述类别上获得了几种有趣的Bohr不平等推论。

Let $ϕ$ be analytic and univalent ({\it i.e.,} one-to-one) in $\mathbb{D}:=\{z\in\mathbb{C}: |z|<1\}$ such that $ϕ(\mathbb{D})$ has positive real part, is symmetric with respect to the real axis, starlike with respect to $ϕ(0)=1,$ and $ϕ' (0)>0$. A function $f \in \mathcal{C}(ϕ)$ if $1+ zf''(z)/f'(z) \prec ϕ(z),$ and $f\in \mathcal{C}_{c}(ϕ)$ if $2(zf'(z))'/(f(z)+\overline{f(\bar{z})})' \prec ϕ(z)$ for $ z\in \mathbb{D}$. In this article, we consider the classes $\mathcal{HC}(ϕ)$ and $\mathcal{HC}_{c}(ϕ)$ consisting of harmonic mappings $f=h+\overline{g}$ of the form $$ h(z)=z+ \sum \limits_{n=2}^{\infty} a_{n}z^{n} \quad \mbox{and} \quad g(z)=\sum \limits_{n=2}^{\infty} b_{n}z^{n} $$ in the unit disk $\mathbb{D}$, where $h$ belongs to $\mathcal{C}(ϕ)$ and $\mathcal{C}_{c}(ϕ)$ respectively, with the dilation $g'(z)=αz h'(z)$ and $|α|<1$. Using the Bohr phenomenon for subordination classes \cite[Lemma 1]{bhowmik-2018}, we find the radius $R_{f}<1$ such that Bohr inequality $$ |z|+\sum_{n=2}^{\infty} (|a_{n}|+|b_{n}|)|z|^{n} \leq d(f(0),\partial f(\mathbb{D})) $$ holds for $|z|=r\leq R_{f}$ for the classes $\mathcal{HC}(ϕ)$ and $\mathcal{HC}_{c}(ϕ)$ . As a consequence of these results, we obtain several interesting corollaries on Bohr inequality for the aforesaid classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源