论文标题

具有自由能层次结构的体积缩放的共同最近的邻居聚类算法

Volume-Scaled Common Nearest Neighbor Clustering Algorithm with Free-Energy Hierarchy

论文作者

Weiß, R. Gregor, Ries, Benjamin, Wang, Shuzhe, Riniker, Sereina

论文摘要

近年来,马尔可夫状态建模(MSM)和分子动力学(MD)模拟的组合是一种有价值的方法,可以揭示出随着复杂性而增加的分子系统缓慢过程。尽管已专门针对MD数据集的MSM工作流程中的中间步骤的算法(例如特征性和尺寸降低),但通常将常规聚类方法应用于离散步骤。这项工作增加了最近从MD模拟的Boltzmann加权数据开发基于专业密度的聚类算法的努力。我们介绍了体积缩放的共同最近的邻居(VS-CNN)聚类,该聚类是公共最近邻居(CNN)算法的改编版本。该算法的一个主要优点是,引入的基于密度的标准直接通过Boltzmann倒置链接到自由能概念。这种自由能的观点允许采用直接的层次结构方案,以识别复杂分子系统通常坚固的自由能景观的不同水平的构象簇。

The combination of Markov state modeling (MSM) and molecular dynamics (MD) simulations has been shown in recent years to be a valuable approach to unravel the slow processes of molecular systems with increasing complexity. While the algorithms for intermediate steps in the MSM workflow like featurization and dimensionality reduction have been specifically adapted for MD data sets, conventional clustering methods are generally applied for the discretization step. This work adds to recent efforts to develop specialized density-based clustering algorithms for the Boltzmann-weighted data from MD simulations. We introduce the volume-scaled common nearest neighbor (vs-CNN) clustering that is an adapted version of the common nearest neighbor (CNN) algorithm. A major advantage of the proposed algorithm is that the introduced density-based criterion directly links to a free-energy notion via Boltzmann inversion. Such a free-energy perspective allows for a straightforward hierarchical scheme to identify conformational clusters at different levels of a generally rugged free-energy landscape of complex molecular systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源