论文标题

使用颤抖品种对弹簧纤维的不可还原成分的研究

A study of irreducible components of Springer fibers using quiver varieties

论文作者

Im, Mee Seong, Lai, Chun-Ju, Wilbert, Arik

论文摘要

Maffei-Nakajima的一个了不起的定理是,slodowy的品种(这是分辨率的分辨率的子)可以实现的。在本文中,我们根据某些假设构建了该系统的解决方案。这建立了一种明确,有效的方法,以计算Maffei-Nakajima同构下的静态品种中包含的完整标志的图像,并用Quiver表示形式描述这些标志。由于自然含有静态的品种包含弹簧纤维,因此我们可以使用这些结果来提供对两行弹簧纤维的不可约组件的明确描述,这是通过颤抖的表示的核心关系。

It is a remarkable theorem by Maffei--Nakajima that the Slodowy variety, which is a subvariety of the resolution of the nilpotent cone, can be realized as a Nakajima quiver variety of type A. However, the isomorphism is rather implicit as it takes to solve a system of equations in which the variables are linear maps. In this paper, we construct solutions to this system under certain assumptions. This establishes an explicit and efficient way to compute the image of a complete flag contained in the Slodowy variety under the Maffei--Nakajima isomorphism and describe these flags in terms of quiver representations. As Slodowy varieties contain Springer fibers naturally, we can use these results to provide an explicit description of the irreducible components of two-row Springer fibers in terms of a family of kernel relations via quiver representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源