论文标题

开放研究知识图中的基于SCIBERT的生物测定语素

SciBERT-based Semantification of Bioassays in the Open Research Knowledge Graph

论文作者

Anteghini, Marco, D'Souza, Jennifer, Santos, Vitor A. P. Martins dos, Auer, Sören

论文摘要

作为对生物学分析的语义问题的新贡献,在本文中,我们提出了一种基于神经网络的方法,以自动使用Semantify,从而结构结构,非结构化的生物测定文本描述。为此,实验评估显示出有望,因为基于神经的语素显着超过了基于天真的频率基线方法。具体而言,神经方法从基于频率的方法中获得72%的F1,而47%F1。

As a novel contribution to the problem of semantifying biological assays, in this paper, we propose a neural-network-based approach to automatically semantify, thereby structure, unstructured bioassay text descriptions. Experimental evaluations, to this end, show promise as the neural-based semantification significantly outperforms a naive frequency-based baseline approach. Specifically, the neural method attains 72% F1 versus 47% F1 from the frequency-based method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源