论文标题
深度学习denoising for EOG伪像从脑电图中删除
Deep learning denoising for EOG artifacts removal from EEG signals
论文作者
论文摘要
脑电图(EEG)记录,特别是眼部,肌肉和心脏伪影中遇到的干扰源很多。拒绝脑电图是脑电图分析中的一个重要过程,因为这种工件在脑电图信号分析中引起了许多问题。在脑电图降级过程中,最具挑战性的问题之一是删除电截面(EOG)和EEG信号在频率和时间域都重叠的眼部伪影。在本文中,我们建立并培训了一个深度学习模型,以应对这一挑战并有效地消除眼部伪像。在提出的方案中,我们将每个脑电图信号转换为要馈送到U-NET模型的图像,这是通常用于图像分割任务中的深度学习模型。我们提出了三种不同的方案,并使我们的基于U-NET的模型学会学会净化受污染的EEG信号,类似于图像分割过程中使用的过程。结果证实,我们的一个方案可以达到可靠且有希望的准确性,以减少目标信号(纯EEG)和预测信号(纯化的EEG)之间的平方误差。
There are many sources of interference encountered in the electroencephalogram (EEG) recordings, specifically ocular, muscular, and cardiac artifacts. Rejection of EEG artifacts is an essential process in EEG analysis since such artifacts cause many problems in EEG signals analysis. One of the most challenging issues in EEG denoising processes is removing the ocular artifacts where Electrooculographic (EOG), and EEG signals have an overlap in both frequency and time domains. In this paper, we build and train a deep learning model to deal with this challenge and remove the ocular artifacts effectively. In the proposed scheme, we convert each EEG signal to an image to be fed to a U-NET model, which is a deep learning model usually used in image segmentation tasks. We proposed three different schemes and made our U-NET based models learn to purify contaminated EEG signals similar to the process used in the image segmentation process. The results confirm that one of our schemes can achieve a reliable and promising accuracy to reduce the Mean square error between the target signal (Pure EEGs) and the predicted signal (Purified EEGs).