论文标题

关于模拟计算系统的时空行为

On the spatiotemporal behavior in biology-mimicking computing systems

论文作者

Végh, János, Berki, Ádám J.

论文摘要

从单个处理器到超级计算机的常规计算系统的有效载荷性能达到了自然界的限制。对应对“大数据”的需求不断增长(基于或协助的人工智能),以及对更完全了解大脑运行的兴趣,刺激了从廉价的常规组件中构建模仿生物学计算系统的努力,并构建了不同的(“神经形态”)计算系统。一方面,这些系统需要大量的处理器,这引入了性能限制和非线性缩放。另一方面,神经元操作与常规工作负载有很大不同。常规计算(包括其数学背景和物理实施)是基于假设即时相互作用的,而生物神经元系统具有“时空”的行为。仅此差异就可以模仿技术实施中的生物学行为。此外,计算中最近的问题称注意时间行为也是计算系统的一般特征。它们在生物系统和技术系统中的某些影响已经注意到。然而,处理这些问题是不完整/不当的。基于Minkowski变换的时间逻辑引入时间逻辑,对两种计算系统的运行进行了定量的见解,此外,还提供了数十年历史的经验现象的自然解释。如果没有正确考虑其时间行为,则不能有效实施或对生物神经系统的真正模仿。

The payload performance of conventional computing systems, from single processors to supercomputers, reached its limits the nature enables. Both the growing demand to cope with "big data" (based on, or assisted by, artificial intelligence) and the interest in understanding the operation of our brain more completely, stimulated the efforts to build biology-mimicking computing systems from inexpensive conventional components and build different ("neuromorphic") computing systems. On one side, those systems require an unusually large number of processors, which introduces performance limitations and nonlinear scaling. On the other side, the neuronal operation drastically differs from the conventional workloads. The conventional computing (including both its mathematical background and physical implementation) is based on assuming instant interaction, while the biological neuronal systems have a "spatiotemporal" behavior. This difference alone makes imitating biological behavior in technical implementation hard. Besides, the recent issues in computing called the attention to that the temporal behavior is a general feature of computing systems, too. Some of their effects in both biological and technical systems were already noticed. Nevertheless, handling of those issues is incomplete/improper. Introducing temporal logic, based on the Minkowski transform, gives quantitative insight into the operation of both kinds of computing systems, furthermore provides a natural explanation of decades-old empirical phenomena. Without considering their temporal behavior correctly, neither effective implementation nor a true imitation of biological neural systems are possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源