论文标题
大流行数据中复杂固定点的证据
Evidence for complex fixed points in pandemic data
论文作者
论文摘要
流行数据表明,在波之间延伸的受感染病例的准线性生长(漫步期)存在。我们证明,这构成了存在近时间尺度不变性的证据,这些证据通过流行性重态化组方法中的复杂固定点进行了整洁编码。结果,我们对多波动力学及其间漫游方案进行了更深入的了解。我们的结果对COVID-19-19大流行数据进行了测试和校准。由于我们的方法围绕对称原则组织的简单性,我们的发现等于在数学上建模流行病学数据的方式的范式转移。
Epidemic data show the existence of a region of quasi-linear growth (strolling period) of infected cases extending in between waves. We demonstrate that this constitutes evidence for the existence of near time-scale invariance that is neatly encoded via complex fixed points in the epidemic Renormalisation Group approach. As a result we achieve a deeper understanding of multiple wave dynamics and its inter-wave strolling regime. Our results are tested and calibrated against the COVID-19 pandemic data. Because of the simplicity of our approach that is organised around symmetry principles our discovery amounts to a paradigm shift in the way epidemiological data are mathematically modelled.