论文标题

在推荐系统中建模在线行为:时间上下文的重要性

Modeling Online Behavior in Recommender Systems: The Importance of Temporal Context

论文作者

Filipovic, Milena, Mitrevski, Blagoj, Antognini, Diego, Glaude, Emma Lejal, Faltings, Boi, Musat, Claudiu

论文摘要

推荐系统的研究倾向于在离线和随机采样目标上评估模型性能,但随后使用相同的系统来依次从固定点依次预测用户行为。众所周知,模拟在线推荐系统的系统性能是困难的,并且在离线评估中通常不考虑在线和离线行为之间的差异。这种差异允许弱点不被忽略,直到将模型部署在生产环境中为止。在本文中,我们首先证明在评估推荐的系统性能会导致虚假信心时省略时间上下文。为了克服这一点,我们假设离线评估协议只有在计算时间上下文的情况下才能建模现实生活中的用例。接下来,我们提出了一个培训程序,以进一步将时间上下文嵌入现有模型中。我们使用一种多目标方法将时间上下文引入传统的时间 - 纽约推荐系统,并通过拟议的评估协议确认其优势。最后,我们验证了以附加的目标占主导地位的帕累托阵线,该目标是由最先进的模型所产生的目标,这些目标仅在三个现实世界中可公开可用的数据集上进行了优化。结果表明,包括我们的时间目标可以提高@20的召回率高达20%。

Recommender systems research tends to evaluate model performance offline and on randomly sampled targets, yet the same systems are later used to predict user behavior sequentially from a fixed point in time. Simulating online recommender system performance is notoriously difficult and the discrepancy between online and offline behaviors is typically not accounted for in offline evaluations. This disparity permits weaknesses to go unnoticed until the model is deployed in a production setting. In this paper, we first demonstrate how omitting temporal context when evaluating recommender system performance leads to false confidence. To overcome this, we postulate that offline evaluation protocols can only model real-life use-cases if they account for temporal context. Next, we propose a training procedure to further embed the temporal context in existing models. We use a multi-objective approach to introduce temporal context into traditionally time-unaware recommender systems and confirm its advantage via the proposed evaluation protocol. Finally, we validate that the Pareto Fronts obtained with the added objective dominate those produced by state-of-the-art models that are only optimized for accuracy on three real-world publicly available datasets. The results show that including our temporal objective can improve recall@20 by up to 20%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源