论文标题
通过隐式空间域缺口过滤躲避深泡检测
Dodging DeepFake Detection via Implicit Spatial-Domain Notch Filtering
论文作者
论文摘要
当前的高保真生成和对Deepfake图像的高精度检测是在军备竞赛中。我们认为,产生高度现实和“检测逃避”的深泡沫可以实现提高未来一代深层检测能力的最终目标。在本文中,我们提出了一条简单而强大的管道,以通过执行隐式空间域凹口滤波来减少假图像的伪影图案而不会伤害图像质量。我们首先证明,频域缺口过滤,尽管著名地证明可以有效地消除空间域中的周期性噪声,但由于缺口过滤器所需的手动设计,我们手头的任务是不可行的。因此,我们诉诸于一种基于学习的方法来重现Notch过滤效应,而仅在空间域中。我们采用添加压倒性的空间噪声来打破周期性噪声模式和深层图像过滤以重建无噪声的假图像,并将方法命名为DeepNotch。深度图像过滤为嘈杂图像中的每个像素提供了一个专门的滤波器,与其深击对应物相比,产生具有高保真度的过滤图像。此外,我们还使用图像的语义信息来生成对抗性指导图,以明智地添加噪声。我们对3种代表性的最先进的深层检测方法的大规模评估(对16种类型的Deepfakes进行了测试),这表明我们的技术大大降低了这3种伪造图像检测方法的准确性,平均36.79%,最高为97.02%。
The current high-fidelity generation and high-precision detection of DeepFake images are at an arms race. We believe that producing DeepFakes that are highly realistic and 'detection evasive' can serve the ultimate goal of improving future generation DeepFake detection capabilities. In this paper, we propose a simple yet powerful pipeline to reduce the artifact patterns of fake images without hurting image quality by performing implicit spatial-domain notch filtering. We first demonstrate that frequency-domain notch filtering, although famously shown to be effective in removing periodic noise in the spatial domain, is infeasible for our task at hand due to the manual designs required for the notch filters. We, therefore, resort to a learning-based approach to reproduce the notch filtering effects, but solely in the spatial domain. We adopt a combination of adding overwhelming spatial noise for breaking the periodic noise pattern and deep image filtering to reconstruct the noise-free fake images, and we name our method DeepNotch. Deep image filtering provides a specialized filter for each pixel in the noisy image, producing filtered images with high fidelity compared to their DeepFake counterparts. Moreover, we also use the semantic information of the image to generate an adversarial guidance map to add noise intelligently. Our large-scale evaluation on 3 representative state-of-the-art DeepFake detection methods (tested on 16 types of DeepFakes) has demonstrated that our technique significantly reduces the accuracy of these 3 fake image detection methods, 36.79% on average and up to 97.02% in the best case.