论文标题
在三个球定理上用于Helmholtz方程的解决方案
On the three ball theorem for solutions of the Helmholtz equation
论文作者
论文摘要
令$ u_k $成为helmholtz方程的解决方案,带有波数$ k $,$Δu_k+k^2 u_k = 0 $,在$ \ m \ m}^n $,$ \ m}^n $中的小球上对于固定点$ p $,我们定义$ m_ {u_k}(r)= \ max_ {d(x,x,p)\ le r} | u_k(x)|。$以下三个球不等式$ m_ {u_k}(u_k}(u_k}(2r)\ le c(k,r,α)m_ {u_k}(r)^αm_{u_k}(4r)^{1-α} $是众所周知的,它可容纳一些$α\ in(0,1)$和$ c(k,r,r,α)> 0 $ u_k $。我们表明,常数$ c(k,r,α)$在$ k $中成倍增长(当$ r $固定而小时)。我们还将我们的结果与Riemannian歧管上Helmholtz方程的Cauchy问题解决方案的稳定性进行了比较。
Let $u_k$ be a solution of the Helmholtz equation with the wave number $k$, $Δu_k+k^2 u_k=0$, on a small ball in either $\mathbb{R}^n$, $\mathbb{S}^n$, or $\mathbb{H}^n$. For a fixed point $p$, we define $M_{u_k}(r)=\max_{d(x,p)\le r}|u_k(x)|.$ The following three ball inequality $M_{u_k}(2r)\le C(k,r,α)M_{u_k}(r)^αM_{u_k}(4r)^{1-α}$ is well known, it holds for some $α\in (0,1)$ and $C(k,r,α)>0$ independent of $u_k$. We show that the constant $C(k,r,α)$ grows exponentially in $k$ (when $r$ is fixed and small). We also compare our result with the increased stability for solutions of the Cauchy problem for the Helmholtz equation on Riemannian manifolds.