论文标题

开放式的细颗粒3D对象分类,通过在多种颜色空间中结合形状和纹理特征

Open-Ended Fine-Grained 3D Object Categorization by Combining Shape and Texture Features in Multiple Colorspaces

论文作者

Keunecke, Nils, Kasaei, S. Hamidreza

论文摘要

由于服务机器人数量不断增加,对高度准确的实时3D对象识别的需求不断增长。考虑到在更复杂和动态的环境中机器人应用的扩展,很明显,不可能将所有对象类别进行预编程并事先预测所有异常。因此,机器人应该具有在环境中工作时以开放式方式学习新对象类别的功能。要考虑到这个目标,我们提出了一种深入的转移学习方法,以通过在多种颜色空间中考虑形状和纹理信息来生成量表和姿势不变对象表示。然后将获得的全局对象表示形式馈送到基于实例的对象类别学习和识别中,其中非专家用户存在于学习循环中,并可以通过教授新对象类别或纠正不足或错误类别来交互方式指导经验获取过程。在这项工作中,形状信息编码所有类别的常见模式,而纹理信息则用于描述每个实例的详细外观。对多色空间组合和网络体系结构进行评估以找到最描述性系统。实验结果表明,所提出的网络体系结构在对象分类准确性和可扩展性方面超出了所选最新方法。此外,我们在服务场景的背景下进行了一个真正的机器人实验,以显示所提出方法的实时性能。

As a consequence of an ever-increasing number of service robots, there is a growing demand for highly accurate real-time 3D object recognition. Considering the expansion of robot applications in more complex and dynamic environments,it is evident that it is not possible to pre-program all object categories and anticipate all exceptions in advance. Therefore, robots should have the functionality to learn about new object categories in an open-ended fashion while working in the environment.Towards this goal, we propose a deep transfer learning approach to generate a scale- and pose-invariant object representation by considering shape and texture information in multiple colorspaces. The obtained global object representation is then fed to an instance-based object category learning and recognition,where a non-expert human user exists in the learning loop and can interactively guide the process of experience acquisition by teaching new object categories, or by correcting insufficient or erroneous categories. In this work, shape information encodes the common patterns of all categories, while texture information is used to describes the appearance of each instance in detail.Multiple color space combinations and network architectures are evaluated to find the most descriptive system. Experimental results showed that the proposed network architecture out-performed the selected state-of-the-art approaches in terms of object classification accuracy and scalability. Furthermore, we performed a real robot experiment in the context of serve-a-beer scenario to show the real-time performance of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源