论文标题

r $^2 $ dp:一种通用和自动化的方法,用于优化无知最佳分布的差异私密性的随机机制

R$^2$DP: A Universal and Automated Approach to Optimizing the Randomization Mechanisms of Differential Privacy for Utility Metrics with No Known Optimal Distributions

论文作者

Mohammady, Meisam, Xie, Shangyu, Hong, Yuan, Zhang, Mengyuan, Wang, Lingyu, Pourzandi, Makan, Debbabi, Mourad

论文摘要

差异隐私(DP)已成为广泛应用的事实上的标准隐私概念。由于数据实用程序在不同应用程序中的含义可能会大不相同,因此,一个关键的挑战是找到给定实用程序度量的最佳随机机制,即分布及其参数。现有作品在某些特殊情况下确定了最佳分布,同时将所有其他公用事业指标(例如有用性和图形距离)留作开放问题。由于现有的作品主要依靠手动分析来检查所有分布的搜索空间,因此重复每个公用事业指标的努力将是一个昂贵的过程。为了解决这种缺陷,我们提出了一种新颖的方法,可以自动优化在共同框架下在不同应用中发现的不同实用性指标。我们的关键思想是,通过将注入的噪声本身作为随机变量的方差,两个倍分布可以大致覆盖所有分布的搜索空间。因此,我们可以在此搜索空间中自动找到分布,以通过优化两倍分布的参数来以类似的方式优化不同的效用指标。具体而言,我们定义了一个通用框架,即,将差异隐私的随机机制随机化(r $^2 $ dp),然后我们正式分析了其隐私和实用性。我们的实验表明,对于几个没有已知的最佳分布的多个实用性指标,R $^2 $ DP比基线分布(Laplace)可以提供更好的结果,而我们的结果渐近地涉及对具有已知最佳分布的实用性指标的最佳方法。作为附带利益,由两倍分销引入的增加的自由度允许R $^2 $ dp来适应数据所有者和收件人的偏好。

Differential privacy (DP) has emerged as a de facto standard privacy notion for a wide range of applications. Since the meaning of data utility in different applications may vastly differ, a key challenge is to find the optimal randomization mechanism, i.e., the distribution and its parameters, for a given utility metric. Existing works have identified the optimal distributions in some special cases, while leaving all other utility metrics (e.g., usefulness and graph distance) as open problems. Since existing works mostly rely on manual analysis to examine the search space of all distributions, it would be an expensive process to repeat such efforts for each utility metric. To address such deficiency, we propose a novel approach that can automatically optimize different utility metrics found in diverse applications under a common framework. Our key idea that, by regarding the variance of the injected noise itself as a random variable, a two-fold distribution may approximately cover the search space of all distributions. Therefore, we can automatically find distributions in this search space to optimize different utility metrics in a similar manner, simply by optimizing the parameters of the two-fold distribution. Specifically, we define a universal framework, namely, randomizing the randomization mechanism of differential privacy (R$^2$DP), and we formally analyze its privacy and utility. Our experiments show that R$^2$DP can provide better results than the baseline distribution (Laplace) for several utility metrics with no known optimal distributions, whereas our results asymptotically approach to the optimality for utility metrics having known optimal distributions. As a side benefit, the added degree of freedom introduced by the two-fold distribution allows R$^2$DP to accommodate the preferences of both data owners and recipients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源