论文标题
无碰撞阻力,用于一维的两组分玻色 - 克ubbard模型
Collisionless drag for a one-dimensional two-component Bose-Hubbard model
论文作者
论文摘要
从理论上讲,我们研究了难以捉摸的Andreev-Bashkin无碰撞阻力,以在环上使用两个组成的bose-Hubbard模型。通过张量网络算法,我们计算了超流体刚度矩阵作为内部和间隙相互作用以及晶格填充的函数。然后,我们专注于靠近所谓的配对粉相的最有希望的区域,在那里我们观察到阻力可以与总超级流体密度相提并论。我们阐明了阻力在确定相关函数的远距离行为和声音旋转速度方面的重要性。这样,我们就可以在阻力和旋转易感性方面为旋转Luttinger参数$ k_s $提供表达式。鉴于通过使用捕获在深度光学晶格中的超速玻色混合物来实现系统的情况下,我们的结果很有希望,其中样品的大小是我们模拟的颗粒数量相同的顺序。重要的是,该系统的介质性远非有害,似乎有利于巨大的阻力,避免了Berezinskii-Kosterlitz-在过渡到配对粉状相的过渡时跳跃,这将减少可以观察到大型阻力的区域。
We theoretically investigate the elusive Andreev-Bashkin collisionless drag for a two-component onedimensional Bose-Hubbard model on a ring. By means of tensor network algorithms, we calculate the superfluid stiffness matrix as a function of intra- and interspecies interactions and of the lattice filling. We then focus on the most promising region close to the so-called pair-superfluid phase, where we observe that the drag can become comparable with the total superfluid density. We elucidate the importance of the drag in determining the long-range behavior of the correlation functions and the spin speed of sound. In this way, we are able to provide an expression for the spin Luttinger parameter $K_S$ in terms of drag and the spin susceptibility. Our results are promising in view of implementing the system by using ultracold Bose mixtures trapped in deep optical lattices, where the size of the sample is of the same order of the number of particles we simulate. Importantly, the mesoscopicity of the system, far from being detrimental, appears to favor a large drag, avoiding the Berezinskii-Kosterlitz-Thouless jump at the transition to the pair-superfluid phase which would reduce the region where a large drag can be observed.