论文标题

从生物医学和临床文本中提取的关系:统一的多任务学习框架

Relation Extraction from Biomedical and Clinical Text: Unified Multitask Learning Framework

论文作者

Yadav, Shweta, Ramesh, Srivatsa, Saha, Sriparna, Ekbal, Asif

论文摘要

为了最大程度地减少在生物医学文献搜索中投入的加速时间,已经提出了许多用于自动化知识提取的方法。关系提取就是这样的任务,其中从自由文本中识别出实体之间的语义关系。在生物医学结构域中,调节途径,代谢过程,不良药物反应或疾病模型的提取需要从个人关系中获得知识,例如基因,蛋白质,药物,化学,疾病或表型之间的物理或调节性相互作用。在本文中,我们研究了三个主要的生物医学和临床任务的关系提取任务,即药物 - 药物相互作用,蛋白质 - 蛋白质相互作用和医学概念关系提取。为此,我们对多任务学习(MTL)框架中的关系提取问题进行了建模,并首次引入结构化自我牵键网络的概念,辅以从生物医学和临床文本中预测关系的对抗性学习方法。 MTL的基本概念是通过利用共享表示的概念一起同时学习多个问题。此外,我们还生成了高效的单个任务模型,该模型利用了在细心的门控复发单元中学习的最短依赖性路径嵌入,以比较我们所提出的MTL模型。我们提出的框架显着改善了总体基础(深度学习技术)和单个任务模型,以预测关系,而不会损害所有任务的执行。

To minimize the accelerating amount of time invested in the biomedical literature search, numerous approaches for automated knowledge extraction have been proposed. Relation extraction is one such task where semantic relations between the entities are identified from the free text. In the biomedical domain, extraction of regulatory pathways, metabolic processes, adverse drug reaction or disease models necessitates knowledge from the individual relations, for example, physical or regulatory interactions between genes, proteins, drugs, chemical, disease or phenotype. In this paper, we study the relation extraction task from three major biomedical and clinical tasks, namely drug-drug interaction, protein-protein interaction, and medical concept relation extraction. Towards this, we model the relation extraction problem in multi-task learning (MTL) framework and introduce for the first time the concept of structured self-attentive network complemented with the adversarial learning approach for the prediction of relationships from the biomedical and clinical text. The fundamental notion of MTL is to simultaneously learn multiple problems together by utilizing the concepts of the shared representation. Additionally, we also generate the highly efficient single task model which exploits the shortest dependency path embedding learned over the attentive gated recurrent unit to compare our proposed MTL models. The framework we propose significantly improves overall the baselines (deep learning techniques) and single-task models for predicting the relationships, without compromising on the performance of all the tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源