论文标题
来自临时伽玛抑制的果园的宇宙中微子
Cosmic neutrinos from temporarily gamma-suppressed blazars
论文作者
论文摘要
尽管高能中微子与2017年Blazar TXS 0506+056的明显膨胀状态发现了明显的膨胀状态,但导致天体物理颗粒加速度和中微子产生的机制仍然不确定。最近的研究发现,当透明至$γ$ -rays时,$γ$ - 弗洛林的大麻没有质子产生中微子的不透明度。在这里,我们提供了一种替代解释的观察证据,其中$γ$ ray的排放在有效的中微子生产过程中被抑制。大型质子和目标光子密度有助于产生中微子,同时由于大型$γγ$不透明度而暂时抑制可观察到的$γ$排放。我们表明,当Icecube记录一致的高能中微子IC-190730a时,Blazar PKS 1502+106的Fermi-Lat $γ$ -Flux处于局部最低限度。使用来自OVRO 40米望远镜的数据,我们发现在一致的中微子IC-190730a的时间段中,PKS 1502+106的无线电发射处于较高状态,与较早的无线电和$γ$通量相关的较早时间相比,低状态和高州相关。这表明在中微子生产时,有效流出为$γ$ - 抑制。我们在其他Blazars中发现了类似的本地$γ$ - 抑制作用,包括在魔术的TXS \,0506+056和Fermi-lux的Blazar PKS B1424-418中的Fermi-lux中。使用临时$γ$ - 抑制,中微子 - 基础的巧合搜索可能比以前假设的更敏感,从而可以鉴定出可能存在已经存在的数据的Icecube弥漫性中微子通量的来源。
Despite the uncovered association of a high-energy neutrino with the apparent flaring state of blazar TXS 0506+056 in 2017, the mechanisms leading to astrophysical particle acceleration and neutrino production are still uncertain. Recent studies found that when transparent to $γ$-rays, $γ$-flaring blazars do not have the opacity for protons to produce neutrinos. Here we present observational evidence for an alternative explanation, in which $γ$-ray emission is suppressed during efficient neutrino production. A large proton and target photon density help produce neutrinos while temporarily suppress the observable $γ$-emission due to a large $γγ$ opacity. We show that the Fermi-LAT $γ$-flux of blazar PKS 1502+106 was at a local minimum when IceCube recorded the coincident high-energy neutrino IC-190730A. Using data from the OVRO 40-meter Telescope, we find that radio emission from PKS 1502+106 at the time period of the coincident neutrino IC-190730A was in a high state, in contrast to earlier time periods when radio and $γ$ fluxes are correlated for both low and high states. This points to an active outflow that is $γ$-suppressed at the time of neutrino production. We find similar local $γ$-suppression in other blazars, including in MAGIC's TeV flux of TXS\,0506+056 and Fermi-LAT's flux of blazar PKS B1424-418 at the time of coincident IceCube neutrino detections. Using temporary $γ$-suppression, neutrino-blazar coincidence searches could be substantially more sensitive than previously assumed, enabling the identification of the origin of IceCube's diffuse neutrino flux possibly with already existing data.