论文标题

数据科学生命周期的偏见

Biases in Data Science Lifecycle

论文作者

Ho, Dinh-An, Beyan, Oya

论文摘要

近年来,数据科学已成为我们社会必不可少的一部分。随着时间的流逝,我们之所以依赖这项技术,是因为它有机会从任何领域的数据中获得价值和新见解 - 商业,社交,研究和社会。同时,它提出了关于我们对这些技术的信任的理由的疑问。这种权力可能导致偏见,不适当或意外的行动。因此,应仔细考虑由于数据科学实践而发生的道德考虑,并且在数据科学生命周期期间应确定这些潜在问题,并在可能的情况下进行缓解。但是,典型的数据科学家没有足够的知识来确定这些挑战,并且在数据科学生产过程中并不总是能够包括道德专家。这项研究的目的是为数据科学家提供实用指南,并提高其意识。在这项工作中,我们回顾了不同的偏见来源,并在数据科学生命周期的不同阶段分组。这项工作仍在进行中。早期出版的目的是收集社区反馈并改善偏见类型和解决方案的精选知识库。

In recent years, data science has become an indispensable part of our society. Over time, we have become reliant on this technology because of its opportunity to gain value and new insights from data in any field - business, socializing, research and society. At the same time, it raises questions about how justified we are in placing our trust in these technologies. There is a risk that such powers may lead to biased, inappropriate or unintended actions. Therefore, ethical considerations which might occur as the result of data science practices should be carefully considered and these potential problems should be identified during the data science lifecycle and mitigated if possible. However, a typical data scientist has not enough knowledge for identifying these challenges and it is not always possible to include an ethics expert during data science production. The aim of this study is to provide a practical guideline to data scientists and increase their awareness. In this work, we reviewed different sources of biases and grouped them under different stages of the data science lifecycle. The work is still under progress. The aim of early publishing is to collect community feedback and improve the curated knowledge base for bias types and solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源