论文标题
牛顿重力的梯度修改
Gradient modification of Newtonian gravity
论文作者
论文摘要
在梯度场理论的框架内提出了牛顿重力的第二梯度概括。通过拉格朗日密度的重力场强度的第一和第二梯度引入弱非局部性。提出了牛顿引力的泊松方程的梯度概括,这些引力电位和广泛的高斯定律为重力场强。牛顿重力的这种梯度修改为牛顿重力的直接正规化消除了古典牛顿奇异之处。构建了重力势能和重力法则的有限梯度修饰,并可能与Yukawa的相互作用联系起来,并作为在短距离内对牛顿的反平方定律进行实验测试的合适候选者。此外,研究了指数类型的非局部重力,并给出了其与梯度重力理论的关系。
A second gradient generalization of Newtonian gravity is presented within the framework of gradient field theory. Weak nonlocality is introduced via first and second gradients of the gravitational field strength in the Lagrangian density. Gradient generalizations of the Poisson equation of Newtonian gravitation for the gravitational potential and of the generalized Gauss law for the gravitational field strength are presented. Such a gradient modification of Newtonian gravity provides a straightforward regularization of Newtonian gravity removing the classical Newtonian singularities. Finite gradient modifications of the gravitational potential energy and of the gravitational force law are constructed, with a possible connection to Yukawa interaction, and as suitable candidates for experimental tests of Newton's inverse-square law at short distances. In addition, nonlocal gravity of exponential type is investigated and its relation to gradient gravity theory is given.