论文标题
从静态到动态节点嵌入
From Static to Dynamic Node Embeddings
论文作者
论文摘要
我们引入了一个通用框架,用于利用图表数据以用于基于时间预测的应用程序。我们提出的框架包括学习适当的图表时间序列表示,对时间依赖性进行建模和加权的新方法,并将现有的嵌入方法推广到此类数据中。虽然先前的动态建模和嵌入工作重点是使用基于特定时间尺度的图表(例如1个月)的图表来表示时间戳,但我们提出了$ε$ graph时间表的概念,该概念使用每个图的固定数量的边缘,并在每个图表中使用固定数量,并在以前的时间表中使用了优越的时间表。此外,我们基于时间可及性图和加权时间摘要图的概念提出了许多新的时间模型。然后,这些时间模型通过使它们能够在数据中纳入并适当地将时间依赖性纳入现有碱(静态)嵌入方法来概括现有碱基(静态)嵌入方法。从研究的6个时间网络模型(对于7种基本嵌入方法中的每一种)中,我们发现前3个时间模型始终是利用新的$ε$ - $ -Graph时间序列表示的模型。此外,与现有的针对此类时间预测任务专门开发的现有最新动态节点嵌入方法相比,来自框架的动态嵌入方法几乎总是实现更好的预测性能。最后,这项工作的发现对于设计更好的动态嵌入方法很有用。
We introduce a general framework for leveraging graph stream data for temporal prediction-based applications. Our proposed framework includes novel methods for learning an appropriate graph time-series representation, modeling and weighting the temporal dependencies, and generalizing existing embedding methods for such data. While previous work on dynamic modeling and embedding has focused on representing a stream of timestamped edges using a time-series of graphs based on a specific time-scale (e.g., 1 month), we propose the notion of an $ε$-graph time-series that uses a fixed number of edges for each graph, and show its superiority over the time-scale representation used in previous work. In addition, we propose a number of new temporal models based on the notion of temporal reachability graphs and weighted temporal summary graphs. These temporal models are then used to generalize existing base (static) embedding methods by enabling them to incorporate and appropriately model temporal dependencies in the data. From the 6 temporal network models investigated (for each of the 7 base embedding methods), we find that the top-3 temporal models are always those that leverage the new $ε$-graph time-series representation. Furthermore, the dynamic embedding methods from the framework almost always achieve better predictive performance than existing state-of-the-art dynamic node embedding methods that are developed specifically for such temporal prediction tasks. Finally, the findings of this work are useful for designing better dynamic embedding methods.