论文标题

在扭曲的双层石墨烯中相关的绝缘阶段

Correlated Insulating Phases in the Twisted Bilayer Graphene

论文作者

Da Liao, Yuan, Xu, Xiao Yan, Meng, Zi Yang, Kang, Jian

论文摘要

我们回顾了扭曲的双层石墨烯中相关绝缘状态的分析和数值研究,重点关注真实空间晶格模型构建体及其无偏的量子多体溶液。我们表明,通过为狭窄带构建局部Wannier状态,可以通过与辅助最近的邻居跳跃术语相互作用来近似投影的库仑相互作用。仅使用互动部分,考虑到旋转和山谷的自由度,哈密顿量为$ su(4)$对称。在忽略动力学术语的强耦合限制中,发现基态在$ su(4)$歧管中。动力学术语被视为扰动,打破了这种大的$ su(4)$对称性并推动Intervalley相干状态,量子拓扑绝缘子和其他破坏对称性绝缘状态的外观。我们首先介绍Moiré晶格模型构建的理论分析,然后展示如何以公正的方式使用大型量子蒙特卡洛模拟来解决该模型。我们进一步提供了潜在的方向,使得从真实空间模型构建及其量子多体解决方案中如何逐渐理解在扭曲的双层石墨烯相关物理学中令人困惑但令人兴奋的实验发现。这篇综述将对读者掌握扭曲双层石墨烯的模型研究的快速生长领域有帮助。

We review analytical and numerical studies of correlated insulating states in twisted bilayer graphene, focusing on real-space lattice models constructions and their unbiased quantum many-body solutions. We show that by constructing localized Wannier states for the narrow bands, the projected Coulomb interactions can be approximated by interactions of cluster charges with assisted nearest neighbor hopping terms. With the interaction part only, the Hamiltonian is $SU(4)$ symmetric considering both spin and valley degrees of freedom. In the strong coupling limit where the kinetic terms are neglected, the ground states are found to be in the $SU(4)$ manifold with degeneracy. The kinetic terms, treated as perturbation, break this large $SU(4)$ symmetry and propel the appearance of intervalley coherent state, quantum topological insulators and other symmetry-breaking insulating states. We first present the theoretical analysis of moiré lattice model construction and then show how to solve the model with large-scale quantum Monte Carlo simulations in an unbiased manner. We further provide potential directions such that from the real-space model construction and its quantum many-body solutions how the perplexing yet exciting experimental discoveries in the correlation physics of twisted bilayer graphene can be gradually understood. This review will be helpful for the readers to grasp the fast growing field of the model study of twisted bilayer graphene.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源