论文标题

影响多体浮动动力学的矩阵方法

Influence matrix approach to many-body Floquet dynamics

论文作者

Lerose, Alessio, Sonner, Michael, Abanin, Dmitry A.

论文摘要

在这项工作中,我们引入了一种研究量子多体动力学的方法,灵感来自Feynman-Vernon影响功能。为了关注一个相互作用的浮标旋转链,我们考虑了动力学的Keldysh路径综合描述。我们方法中的中心对象是影响矩阵(IM),它描述了系统对局部子系统动态的影响。对于翻译不变的模型,我们为影响矩阵制定了一个自通式方程。对于模型参数的某些特殊值,我们获得了代表完美dephaser(PD)的精确解决方案。从物理上讲,PD对应于一个多体系统,该系统本身就是一个完美的马尔可夫浴室:在每个时期,它都可以测量每个旋转。对于此处考虑的模型,我们确定PD点包括在最近的工作中调查的双统一电路。在PD点附近,该系统不是马尔可安(Markovian),而是充当短时间内记忆时间的浴缸。在这种情况下,我们证明可以使用矩阵态(MPS)方法来求解自矛盾方程,因为IM时间纠缠较低。分析见解和MPS计算的结合使我们能够根据有效的“统计力学”描述来表征影响矩阵的结构。我们最终通过分析计算嵌入式杂质旋转的速度来说明了此描述的预测能力。此处制定的影响矩阵方法提供了量子多体动力学问题的直观视图,为构建可溶解的热动力学模型打开了途径,这些模型可溶解或可以通过基于MPS的方法有效地处理,并进一步表征量子成符号或缺乏量子。

In this work, we introduce an approach to study quantum many-body dynamics, inspired by the Feynman-Vernon influence functional. Focusing on a family of interacting, Floquet spin chains, we consider a Keldysh path-integral description of the dynamics. The central object in our approach is the influence matrix (IM), which describes the effect of the system on the dynamics of a local subsystem. For translationally invariant models, we formulate a self-consistency equation for the influence matrix. For certain special values of the model parameters, we obtain an exact solution which represents a perfect dephaser (PD). Physically, a PD corresponds to a many-body system that acts as a perfectly Markovian bath on itself: at each period, it measures every spin. For the models considered here, we establish that PD points include dual-unitary circuits investigated in recent works. In the vicinity of PD points, the system is not perfectly Markovian, but rather acts as a bath with a short memory time. In this case, we demonstrate that the self-consistency equation can be solved using matrix-product states (MPS) methods, as the IM temporal entanglement is low. A combination of analytical insights and MPS computations allows us to characterize the structure of the influence matrix in terms of an effective "statistical-mechanics" description. We finally illustrate the predictive power of this description by analytically computing how quickly an embedded impurity spin thermalizes. The influence matrix approach formulated here provides an intuitive view of the quantum many-body dynamics problem, opening a path to constructing models of thermalizing dynamics that are solvable or can be efficiently treated by MPS-based methods, and to further characterizing quantum ergodicity or lack thereof.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源