论文标题
$ K $ - 理论扭转和Zeta功能
$K$-theoretic torsion and the zeta function
论文作者
论文摘要
我们将较高的代数$ k $ - 理论(最初是由于Milnor引起的)将无限循环盖与其Lefschetz Zeta函数联系起来。我们的身份涉及较高的扭转不变的内态扭转,具有参数性的内态家族以及这种家族的较高Zeta功能。我们还展示了具有非平凡性内态扭转的内态家族的几个例子。
We generalize to higher algebraic $K$-theory an identity (originally due to Milnor) that relates the Reidemeister torsion of an infinite cyclic cover to its Lefschetz zeta function. Our identity involves a higher torsion invariant, the endomorphism torsion, of a parametrized family of endomorphisms as well as a higher zeta function of such a family. We also exhibit several examples of families of endomorphisms having non-trivial endomorphism torsion.