论文标题
SIR模型的两个关键时期
Two critical times for the SIR model
论文作者
论文摘要
我们考虑了SIR模型,并在第一次研究感染者的数量开始减少时,该人群首次低于给定的阈值。我们将这些时间解释为最初的易感和感染人群的功能,并将其描述为特定部分微分方程的解决方案。这使我们能够获得这些时代不可或缺的表示形式,进而为大量人口估算它们。
We consider the SIR model and study the first time the number of infected individuals begins to decrease and the first time this population is below a given threshold. We interpret these times as functions of the initial susceptible and infected populations and characterize them as solutions of a certain partial differential equation. This allows us to obtain integral representations of these times and in turn to estimate them precisely for large populations.