论文标题

集中式和分布式RDF引擎中的存储,索引,查询处理和基准测试:一项调查

Storage, Indexing, Query Processing, and Benchmarking in Centralized and Distributed RDF Engines: A Survey

论文作者

Ali, Waqas, Saleem, Muhammad, Yao, Bin, Hogan, Aidan, Ngomo, Axel-Cyrille Ngonga

论文摘要

语义网和链接数据的最新进展改变了传统网络的工作。资源描述框架(RDF)格式有很大的采用,用于保存基于Web的数据。这种大规模采用为开发各种集中和分布的RDF处理引擎铺平了道路。这些发动机采用各种机制来实施查询处理引擎的关键组件,例如数据存储,索引,语言支持和查询执行。所有这些组件都控制着查询的执行方式,并可能对查询运行时产生重大影响。例如,以各种方式存储RDF数据会显着影响所需的数据存储空间和查询运行时性能。 RDF引擎中使用的索引方法的类型对于快速数据查找至关重要。用于查询执行的基础查询语言(例如SPARQL或SQL)的类型是RDF存储解决方案的关键优化组件。最后,涉及不同加入订单的查询执行会显着影响查询响应时间。本文在存储,索引,语言支持和查询执行方面对集中式和分布式RDF发动机进行了全面审查。

The recent advancements of the Semantic Web and Linked Data have changed the working of the traditional web. There is significant adoption of the Resource Description Framework (RDF) format for saving of web-based data. This massive adoption has paved the way for the development of various centralized and distributed RDF processing engines. These engines employ various mechanisms to implement critical components of the query processing engines such as data storage, indexing, language support, and query execution. All these components govern how queries are executed and can have a substantial effect on the query runtime. For example, the storage of RDF data in various ways significantly affects the data storage space required and the query runtime performance. The type of indexing approach used in RDF engines is critical for fast data lookup. The type of the underlying querying language (e.g., SPARQL or SQL) used for query execution is a crucial optimization component of the RDF storage solutions. Finally, query execution involving different join orders significantly affects the query response time. This paper provides a comprehensive review of centralized and distributed RDF engines in terms of storage, indexing, language support, and query execution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源