论文标题
脾气均匀的空间III
Tempered homogeneous spaces III
论文作者
论文摘要
令G为真实的半神经代数谎言组,而H实际还原代数亚组。我们描述了$ l^2(g/h)$中G表示的对(G,H)。当G和H是复杂的谎言组时,恢复条件的特征是以下事实:g/h上的h h h中的稳定器几乎是阿贝尔式的。
Let G be a real semisimple algebraic Lie group and H a real reductive algebraic subgroup. We describe the pairs (G,H) for which the representation of G in $L^2(G/H)$ is tempered. When G and H are complex Lie groups, the temperedness condition is characterized by the fact that the stabilizer in H of a generic point on G/H is virtually abelian.