论文标题

无限二元矩阵上的二元性和双重性

Duality and bicrystals on infinite binary matrices

论文作者

Gerber, Thomas, Lecouvey, Cédric

论文摘要

已知具有有限型A型双晶结构的有限二进制矩阵集。我们首先回顾了这种经典的结构,解释了它如何简短证明科斯特卡多项式和一维总和之间的平等以及2M-x Pitman变换的自然概括。接下来,我们表明,一旦引入了无限二元矩阵家庭的相关形式主义,这是一种更普遍的现象的特殊情况。事实证明,每个这样的矩阵家族都具有kac-moody双晶体和由经典根系定义的三级晶体结构。此外,我们给出了这些多晶的明确分解,让人想起产生cauchy身份的字符的分解。

The set of finite binary matrices of a given size is known to carry a finite type A bicrystal structure. We first review this classical construction, explain how it yields a short proof of the equality between Kostka polynomials and one-dimensional sums together with a natural generalisation of the 2M -- X Pitman transform. Next, we show that, once the relevant formalism on families of infinite binary matrices is introduced, this is a particular case of a much more general phenomenon. Each such family of matrices is proved to be endowed with Kac-Moody bicrystal and tricrystal structures defined from the classical root systems. Moreover, we give an explicit decomposition of these multicrystals, reminiscent of the decomposition of characters yielding the Cauchy identities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源