论文标题

柴油发电机模型参数化用于微电网模拟使用混合盒受限的Levenberg-Marquardt算法

Diesel Generator Model Parameterization for Microgrid Simulation Using Hybrid Box-Constrained Levenberg-Marquardt Algorithm

论文作者

Long, Qian, Yu, Hui, Xie, Fuhong, Lu, Ning, Lubkeman, David

论文摘要

现有的发电机参数化方法通常是为大型涡轮机发电机单元开发的,在微电网应用中很难应用于小型KW级柴油发电机。本文介绍了一种模型参数化方法,该方法可以同时使用具有有限测量点的负载步骤更换测试来估计一组完整的KW级柴油发电机参数。该方法提供了一种更具成本效益和健壮的方法,以实现微电网动态仿真的柴油发电机的高保真建模。开发了一种两阶段的混合盒约束的Levenberg-Marquardt(H-BCLM)算法,以搜索给定参数边界的最佳参数集。应用启发式算法,即基于广义的对立的学习遗传算法(GOL-GA),用于在第一阶段识别适当的初始估计,然后是修改的Levenberg-Marquardt算法,旨在根据第一阶段的结果微调解决方案。对柴油发电机模型的动态仿真和从16kW柴油发电机单元进行的现场测量进行了验证。

Existing generator parameterization methods, typically developed for large turbine generator units, are difficult to apply to small kW-level diesel generators in microgrid applications. This paper presents a model parameterization method that estimates a complete set of kW-level diesel generator parameters simultaneously using only load-step-change tests with limited measurement points. This method provides a more cost-efficient and robust approach to achieve high-fidelity modeling of diesel generators for microgrid dynamic simulation. A two-stage hybrid box-constrained Levenberg-Marquardt (H-BCLM) algorithm is developed to search the optimal parameter set given the parameter bounds. A heuristic algorithm, namely Generalized Opposition-based Learning Genetic Algorithm (GOL-GA), is applied to identify proper initial estimates at the first stage, followed by a modified Levenberg-Marquardt algorithm designed to fine tune the solution based on the first-stage result. The proposed method is validated against dynamic simulation of a diesel generator model and field measurements from a 16kW diesel generator unit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源