论文标题
验证n-body代码计时以减少重力环境中的颗粒状DEM模拟
Validating N-body code Chrono for granular DEM simulations in reduced-gravity environments
论文作者
论文摘要
离散元素方法(DEM)经常用于建模复杂的颗粒系统,并增加我们通过理论,实验和现实世界观测获得的知识。数值模拟是研究小行星,彗星和小卫星的重岩覆盖表面的特别强大的工具,其中减少的重力环境会产生不确定的流动行为。在这项工作中,我们提出了一种验证陆地和小体颗粒环境的软球DEM代码的方法。开源代码Chrono首先通过一系列简单的两体碰撞测试进行了修改和评估,然后进行了一组堆积和倒塌测试。在打桩测试中,我们改变了滚动摩擦的系数,以校准使用1 mm玻璃珠的实验的模拟。然后,我们使用摩擦系数使用先前的实验研究中的鼓配置来对旋转鼓中1 mm玻璃珠的流量进行建模。我们测量具有不同粒径,接触力模型,滚动摩擦系数,内聚力水平,鼓旋流速度和重力水平的测试的测试,测量了安息的动态角度,流动层厚度和流动层速度。测试表明,如果鼓旋流速度和重力级别根据称为弗洛德数字的无量纲参数设置,则可以在地球上观察到相同的流量模式,并在地球上观察到降低的重力水平。 Chrono在不同的重力和内聚力水平下已成功验证了已知流动行为,并将用于研究未来作品中的小体型Regolith动力学。
The Discrete Element Method (DEM) is frequently used to model complex granular systems and to augment the knowledge that we obtain through theory, experimentation, and real-world observations. Numerical simulations are a particularly powerful tool for studying the regolith-covered surfaces of asteroids, comets, and small moons, where reduced-gravity environments produce ill-defined flow behaviors. In this work, we present a method for validating soft-sphere DEM codes for both terrestrial and small-body granular environments. The open-source code Chrono is modified and evaluated first with a series of simple two-body-collision tests, and then, with a set of piling and tumbler tests. In the piling tests, we vary the coefficient of rolling friction to calibrate the simulations against experiments with 1 mm glass beads. Then, we use the friction coefficient to model the flow of 1 mm glass beads in a rotating drum, using a drum configuration from a previous experimental study. We measure the dynamic angle of repose, the flowing layer thickness, and the flowing layer velocity for tests with different particle sizes, contact force models, coefficients of rolling friction, cohesion levels, drum rotation speeds and gravity levels. The tests show that the same flow patterns can be observed at Earth and reduced-gravity levels if the drum rotation speed and the gravity-level are set according to the dimensionless parameter known as the Froude number. Chrono is successfully validated against known flow behaviors at different gravity and cohesion levels, and will be used to study small-body regolith dynamics in future works.