论文标题
模拟相对论磁化喷气机的动力学和非热发射I.动力学
Simulating the dynamics and non-thermal emission of relativistic magnetised jets I. Dynamics
论文作者
论文摘要
我们已经在数十kpc上对一系列射流参数进行了从超质黑孔的相对论喷射的磁性磁动力学模拟。主要目的之一是研究不同的MHD不稳定性对喷气动力学的影响及其对喷气参数选择的依赖性。我们发现,两个主要的MHD不稳定性会影响喷气机的动力学,小规模kelvin-Helmholtz(KH)模式和大型扭结模式,它们的进化取决于内部喷射参数,例如Lorentz因子,例如Lorentz因子,密度和压力与外部介质的比率和压力与外部介质以及磁化和磁化功率的比率。低功率喷射易受不稳定性的影响,具有较高中央磁场的喷气机的扭结模式和用于较低磁化的KH模式。中等功率喷射并未显示出扭结模式的明显增长,但KH模式为较低的磁化而发展。较高的功率飞机通常对两种不稳定性都稳定。这种不稳定性在启发茧中诱导湍流的同时减速和非洲,对磁场结构产生了影响。我们在此处提出的对Begelman-Cioffi关系的广义处理后,对喷气机的动力学进行了建模。我们发现,稳定喷气机的动力学与简化的非相似Frii喷气机扩展的分析模型非常匹配,而具有突出MHD不稳定性的喷气机显示了形态的几乎相似的演化,因为能量在喷气头和茧之间更均匀地分布。
We have performed magneto-hydrodynamic simulations of relativistic jets from supermassive blackholes over a few tens of kpc for a range of jet parameters. One of the primary aims were to investigate the effect of different MHD instabilities on the jet dynamics and their dependence on the choice of jet parameters. We find that two dominant MHD instabilities affect the dynamics of the jet, small scale Kelvin- Helmholtz (KH) modes and large scale kink modes, whose evolution depend on internal jet parameters like the Lorentz factor, the ratio of the density and pressure to the external medium and the magnetisation and hence consequently on the jet power. Low power jets are susceptible to both instabilities, kink modes for jets with higher central magnetic field and KH modes for lower magnetisation. Moderate power jets do not show appreciable growth of kink modes, but KH modes develop for lower magnetisation. Higher power jets are generally stable to both instabilities. Such instabilities decelerate and decollimate the jet while inducing turbulence in the cocoon, with consequences on the magnetic field structure. We model the dynamics of the jets following a generalised treatment of the Begelman-Cioffi relations which we present here. We find that the dynamics of stable jets match well with simplified analytic models of expansion of non self-similar FRII jets, whereas jets with prominent MHD instabilities show a nearly self-similar evolution of the morphology as the energy is more evenly distributed between the jet head and the cocoon.