论文标题

$ \ text {pm} _ {10} $在意大利使用SPDE方法的时空建模

Spatio-temporal modelling of $\text{PM}_{10}$ daily concentrations in Italy using the SPDE approach

论文作者

Fioravanti, Guido, Martino, Sara, Cameletti, Michela, Cattani, Giorgio

论文摘要

本文说明了$ \ text {pm} _ {10} $每日分辨率的浓度的$ \ text {pm} $浓度的主要结果的主要结果,该过程使用一组410个监视地点,在整个意大利领土上分布在2015年。具有滞后1时间自回旋组件(AR1)。推理是通过集成的嵌套拉普拉斯近似(INLA)进行的。我们的模型包括11个时空预测指标,包括气象变量和气溶胶光学深度。随着预测因素的影响在几个月内的不同之处,回归基于具有相同协变量的12个月度模型。已经使用交叉验证研究分析了预测模型的性能。我们的结果表明,预测和观察到的值都很好(相关范围:0.79-0.91;偏见:0.22-1.07 $μ\ text {g}/\ text {g}/\ text {m}^3 $; rmse:4.9-13.9-13.9 $μ\ text {g}/\ text {g}/\ text {g}/\ text {g}/\ text {m}^3 $)。模型最终输出是一组365 Gridded(1km $ \ times $ 1公里)的每日$ \ text {pm} _ {10} $映射的意大利,配备了不确定性度量。空间预测性能表明,插值过程能够在生成的$ \ text {pm} _ {10} $表面中重现大规模数据特征而没有不现实的伪像。该论文还提供了我们模型实践应用的两个说明性示例,超出概率和人口暴露地图。

This paper illustrates the main results of a spatio-temporal interpolation process of $\text{PM}_{10}$ concentrations at daily resolution using a set of 410 monitoring sites, distributed throughout the Italian territory, for the year 2015. The interpolation process is based on a Bayesian hierarchical model where the spatial-component is represented through the Stochastic Partial Differential Equation (SPDE) approach with a lag-1 temporal autoregressive component (AR1). Inference is performed through the Integrated Nested Laplace Approximation (INLA). Our model includes 11 spatial and spatio-temporal predictors, including meteorological variables and Aerosol Optical Depth. As the predictors' impact varies across months, the regression is based on 12 monthly models with the same set of covariates. The predictive model performance has been analyzed using a cross-validation study. Our results show that the predicted and the observed values are well in accordance (correlation range: 0.79 - 0.91; bias: 0.22 - 1.07 $μ\text{g}/\text{m}^3$; RMSE: 4.9 - 13.9 $μ\text{g}/\text{m}^3$). The model final output is a set of 365 gridded (1km $\times$ 1km) daily $\text{PM}_{10}$ maps over Italy equipped with an uncertainty measure. The spatial prediction performance shows that the interpolation procedure is able to reproduce the large scale data features without unrealistic artifacts in the generated $\text{PM}_{10}$ surfaces. The paper presents also two illustrative examples of practical applications of our model, exceedance probability and population exposure maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源