论文标题
关于弗拉森科的正式小组法律
On Vlasenko's formal group laws
论文作者
论文摘要
鉴于在\(\ mathbb {z} \)上的环上的laurent多项式,弗拉森科定义了正式的群体定律。我们通过正式组函子的坐标制度确定了这一正式的小组法,证明了该法律的完整性。当laurent多项式的hasse-witt矩阵可逆时,vlasenko通过采取一定的\(p \) - adic限制来定义矩阵。我们表明,该矩阵是此正式组模拟\(p \)的Dieudonné模块的Frobenius。
Given a Laurent polynomial over a ring flat over \(\mathbb{Z}\), Vlasenko defines a formal group law. We identify this formal group law with a coordinate system of a formal group functor, prove its integrality. When the Hasse--Witt matrix of the Laurent polynomial is invertible, Vlasenko defines a matrix by taking a certain \(p\)-adic limit. We show that this matrix is the Frobenius of the Dieudonné module of this formal group modulo \(p\).