论文标题

Pyneb的原子数据评估

Atomic Data Assessment with PyNeb

论文作者

Morisset, Christophe, Luridiana, Valentina, García-Rojas, Jorge, Gómez-Llanos, Verónica, Bautista, Manuel A., Mendoza, Claudio

论文摘要

Pyneb是一种python包装,用于模拟气态星云中的发射线。我们利用其面向对象的体系结构,类方法和历史原子数据库来构建原子数据评估的实用环境。我们的目的是通过严格选择pyneb默认数据集来减少参数空间(线比诊断,电子密度和温度以及离子丰度)的不确定性。我们评估了N-和P样离子(O II,NE IV,S II,Cl III和AR IV)的碰撞速率禁止线的辐射率准确性,这些线被用作密度诊断。在密集的NGC 7027行星星云和仔细的数据分析中观察到的线比的帮助,我们得出了从10 \%以内的辐射率的发射率 - 比率不确定性,比先前预测的50 \%相当改善。我们还研究了最近发表的碳等电序列的电子影响有效碰撞强度的广泛数据集的准确性。通过估计新数据对[N II]和[O III]的关键温度诊断的影响,并通过测量的共振位置对碰撞强度进行基准测试,我们质疑它们在Nebular建模中的有用性。我们确认,对于这两个离子,所选数据集的有效碰撞散布不会导致大于10 \%的温度诊断中的不确定性。

PyNeb is a Python package widely used to model emission lines in gaseous nebulae. We take advantage of its object-oriented architecture, class methods, and historical atomic database to structure a practical environment for atomic data assessment. Our aim is to reduce the uncertainties in parameter space (line-ratio diagnostics, electron density and temperature, and ionic abundances) arising from the underlying atomic data by critically selecting the PyNeb default datasets. We evaluate the questioned radiative-rate accuracy of the collisionally excited forbidden lines of the N- and P-like ions (O II, Ne IV, S II, Cl III, and Ar IV), which are used as density diagnostics. With the aid of observed line ratios in the dense NGC 7027 planetary nebula and careful data analysis, we arrive at emissivity-ratio uncertainties from the radiative rates within 10\%, a considerable improvement over a previously predicted 50\%. We also examine the accuracy of an extensive dataset of electron-impact effective collision strengths for the carbon isoelectronic sequence recently published. By estimating the impact of the new data on the pivotal temperature diagnostics of [N II] and [O III] and by benchmarking the collision strength with a measured resonance position, we question their usefulness in nebular modeling. We confirm that the effective-collision-strength scatter of selected datasets for these two ions does not lead to uncertainties in the temperature diagnostics larger than 10\%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源