论文标题
高维混合物中的套索的非反应性甲骨文不平等现象
Non-asymptotic oracle inequalities for the Lasso in high-dimensional mixture of experts
论文作者
论文摘要
我们在高维环境中研究了专家(MOE)模型的混合物的估计特性,其中预测变量的数量大于样本量,并且文献在理论结果中尤其缺乏。我们考虑了Softmax门控高斯MOE(SGMOE)模型,该模型定义为具有软磁性函数和高斯专家的MOE模型,并专注于通过LASSO进行$ L_1 $调查估计的理论属性。据我们所知,我们是第一个从非反应的角度研究SGMOE模型的$ l_1 $ regindization属性的人,即在最轻微的假设下,即参数空间的界限。我们提供了套索罚款的正则化参数的下限,该参数可确保对kullback的非反应理论控制 - SGMOE模型的LASSO估计器的LASSO损失。最后,我们进行了一项模拟研究,以验证我们的理论发现。
We investigate the estimation properties of the mixture of experts (MoE) model in a high-dimensional setting, where the number of predictors is much larger than the sample size, and for which the literature is particularly lacking in theoretical results. We consider the class of softmax-gated Gaussian MoE (SGMoE) models, defined as MoE models with softmax gating functions and Gaussian experts, and focus on the theoretical properties of their $l_1$-regularized estimation via the Lasso. To the best of our knowledge, we are the first to investigate the $l_1$-regularization properties of SGMoE models from a non-asymptotic perspective, under the mildest assumptions, namely the boundedness of the parameter space. We provide a lower bound on the regularization parameter of the Lasso penalty that ensures non-asymptotic theoretical control of the Kullback--Leibler loss of the Lasso estimator for SGMoE models. Finally, we carry out a simulation study to empirically validate our theoretical findings.