论文标题

椭圆形的calabi-yau五倍和2D(0,2)F理论景观

Elliptic Calabi-Yau fivefolds and 2d (0,2) F-theory landscape

论文作者

Tian, Jiahua, Wang, Yi-Nan

论文摘要

在本文中,我们基于紧凑的椭圆形calabi-yau五倍启动了2D F理论景观的研究。特别是,我们使用Calabi-yau五倍,具有最大的已知Hodge Number $ H^{1,1} $和$ H^{4,1} $确定景观的边界模型。前者产生了当前已知的2d(0,2)超级重力景观中最大的几何量规组,即$ e_8^{482 \,632 \,632 \,421} \ times f_4^{3 \,224 \,224 \,195 \,195 \,728} \,728} \,728} \,728} \, g_2^{11 \,927 \,989 \,964} \ times su(2)^{25 \,625 \,222 \,180} $。除此之外,我们还会系统地研究具有较小程度的加权投影空间中的高度曲面,并检查引力异常的取消。此外,我们还启动了2D F理论中单数基础的研究。我们发现,基本四倍上的Orbifold奇异性对引力异常的贡献非零。

In this paper, we initiate the study of the 2d F-theory landscape based on compact elliptic Calabi-Yau fivefolds. In particular, we determine the boundary models of the landscape using Calabi-Yau fivefolds with the largest known Hodge numbers $h^{1,1}$ and $h^{4,1}$. The former gives rise to the largest geometric gauge group in the currently known 2d (0,2) supergravity landscape, which is $E_8^{482\,632\,421}\times F_4^{3\,224\,195\,728}\times G_2^{11\,927\,989\,964}\times SU(2)^{25\,625\,222\,180}$. Besides that, we systematically study the hypersurfaces in weighted projective spaces with small degrees, and check the gravitational anomaly cancellation. Moreover, we also initiate the study of singular bases in 2d F-theory. We find that orbifold singularities on the base fourfold have non-zero contributions to the gravitational anomaly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源