论文标题

通过理论错误可能性优化大规模结构数据分析

Optimizing large-scale structure data analysis with the theoretical error likelihood

论文作者

Chudaykin, Anton, Ivanov, Mikhail M., Simonović, Marko

论文摘要

大规模结构数据分析的一个重要方面是存在不可忽略的理论不确定性,这在小规模上变得越来越重要。我们通过适当更改拟合模型和协方差矩阵来展示如何将这些不确定性纳入现实的功率谱。与使用锋利动量切割$ k _ {\ rm max} $的标准实践相比,理论错误的包含具有多个优点。首先,随着所采用的理论模型的可靠性降低,理论误差协方差逐渐抑制了短尺度的信息。这允许人们避免$ k _ {\ rm max} $的费力测量,这是标准方法的重要组成部分。其次,理论上的误差可能性给出了无偏的约束,可靠的误差线,由于过度拟合而不会人为地缩小。在现实的设置中,理论错误可能性基本上与标准分析相同的参数约束,并使用适当选择的$ k _ {\ rm max} $产生,从而有效地优化了$ k _ {\ rm max} $的选择。我们使用大批量的N体数据来证明这些点,以在真实和红移空间中的物质和星系聚类。顺便说一句,我们验证了红移空间扭曲的有效现场理论描述,并表明使用单参数现象学高斯抑制模型用于GOD的手指会引起参数恢复的显着偏见。

An important aspect of large-scale structure data analysis is the presence of non-negligible theoretical uncertainties, which become increasingly important on small scales. We show how to incorporate these uncertainties in realistic power spectrum likelihoods by an appropriate change of the fitting model and the covariance matrix. The inclusion of the theoretical error has several advantages over the standard practice of using the sharp momentum cut $k_{\rm max}$. First, the theoretical error covariance gradually suppresses the information from the short scales as the employed theoretical model becomes less reliable. This allows one to avoid laborious measurements of $k_{\rm max}$, which is an essential part of the standard methods. Second, the theoretical error likelihood gives unbiased constrains with reliable error bars that are not artificially shrunk due to over-fitting. In realistic settings, the theoretical error likelihood yields essentially the same parameter constraints as the standard analysis with an appropriately selected $k_{\rm max}$, thereby effectively optimizing the choice of $k_{\rm max}$. We demonstrate these points using the large-volume N-body data for the clustering of matter and galaxies in real and redshift space. In passing, we validate the effective field theory description of the redshift space distortions and show that the use of the one-parameter phenomenological Gaussian damping model for fingers-of-God causes significant biases in parameter recovery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源