论文标题
IRA中的超质量黑洞的完整表征09149-6206
A Full Characterisation of the Supermassive Black Hole in IRAS 09149-6206
论文作者
论文摘要
我们提出了新的宽带X射线观测,即I型Seyfert Galaxy IRAS 09149-6206,在2018年以$ XMM $ -Newton $,$ Nustar $和$ Swift $进行。该来源非常复杂,显示了经典的“温暖” X射线吸收器,高度离子的铁,强烈的相对论反射的额外吸收,来自最内向的积聚盘,并通过更遥远的材料进一步重新处理。通过结合X射线时间和光谱法,我们能够充分表征该系统中的超大质量黑洞,从而构成了其质量,并且首次限制了它的旋转。质量主要由X射线正时约束在功率谱中看到的断裂频率上确定,并且被发现为$ \ log [m _ {\ rm {bh}}/m _ {\ odot}] = 8.0 \ pm 0.6 $(1 $σ$ uncecties)。这与基于H $α$和H $β$线宽度的先前估计值非常吻合,这意味着IRAS 09149-6206在接近(但仍低于)其Eddington Luminiunity的辐射。旋转通过相对论反射的详细建模来限制,并且被发现为$ a^* = 0.94^{+0.02} _ { - 0.07} $(90%信心),将IRAS 09149-6206添加到越来越多的Quiet Quiet Agn清单中,持续了迅速旋转的黑色霍尔斯。各种吸收成分的流出速度都相对谦虚($ v _ {\ rm {out}}} \ Lessim 0.03c $),这意味着这些不太可能驱动重要的星系规模agn反馈。
We present new broadband X-ray observations of the type-I Seyfert galaxy IRAS 09149-6206, taken in 2018 with $XMM$-$Newton$, $NuSTAR$ and $Swift$. The source is highly complex, showing a classic 'warm' X-ray absorber, additional absorption from highly ionised iron, strong relativistic reflection from the innermost accretion disc and further reprocessing by more distant material. By combining X-ray timing and spectroscopy, we have been able to fully characterise the supermassive black hole in this system, constraining both its mass and - for the first time - its spin. The mass is primarily determined by X-ray timing constraints on the break frequency seen in the power spectrum, and is found to be $\log[M_{\rm{BH}}/M_{\odot}] = 8.0 \pm 0.6$ (1$σ$ uncertainties). This is in good agreement with previous estimates based on the H$α$ and H$β$ line widths, and implies that IRAS 09149-6206 is radiating at close to (but still below) its Eddington luminosity. The spin is constrained via detailed modelling of the relativistic reflection, and is found to be $a^* = 0.94^{+0.02}_{-0.07}$ (90% confidence), adding IRAS 09149-6206 to the growing list of radio-quiet AGN that host rapidly rotating black holes. The outflow velocities of the various absorption components are all relatively modest ($v_{\rm{out}} \lesssim 0.03c$), implying these are unlikely to drive significant galaxy-scale AGN feedback.