论文标题
年龄网络:基于MRI的大脑生物年龄估计的迭代框架
Age-Net: An MRI-Based Iterative Framework for Brain Biological Age Estimation
论文作者
论文摘要
生物年龄(BA)的概念虽然在临床实践中很重要,但主要是由于缺乏明确定义的参考标准而难以掌握。对于特定的应用,尤其是在儿科中,医疗图像数据在常规临床环境中用于BA估计。除了这个年龄段的人群之外,BA估计主要限于使用非成像指标,例如血液生物标志物,遗传和细胞数据。但是,由于生活方式和遗传因素,各种器官系统可能表现出不同的老化特征。因此,对BA的全身评估并不能反映器官之间衰老行为的偏差。为此,我们提出了一个新的基于成像的框架,用于特定器官特定的BA估计。在这项最初的研究中,我们主要关注大脑MRI。作为第一步,我们使用深卷积神经网络(Age-net)引入了按时间顺序的年龄(CA)估计框架。与现有的最新CA估计方法相比,我们定量评估了该框架的性能。此外,我们通过一种新型的迭代数据清洁算法扩展了年龄网络,以分离给定种群的非典型患者(ba $ \ not \ $ ca)。我们假设其余人口应近似真正的BA行为。我们将提出的方法应用于包含健康个体以及具有不同痴呆率评级的阿尔茨海默氏病的患者的脑磁共振图像(MRI)数据集。我们证明了预测的BAS与阿尔茨海默氏症患者预期的认知恶化之间的相关性。基于统计和可视化的分析提供了有关拟议方法论的潜在挑战和当前挑战的证据。
The concept of biological age (BA), although important in clinical practice, is hard to grasp mainly due to the lack of a clearly defined reference standard. For specific applications, especially in pediatrics, medical image data are used for BA estimation in a routine clinical context. Beyond this young age group, BA estimation is mostly restricted to whole-body assessment using non-imaging indicators such as blood biomarkers, genetic and cellular data. However, various organ systems may exhibit different aging characteristics due to lifestyle and genetic factors. Thus, a whole-body assessment of the BA does not reflect the deviations of aging behavior between organs. To this end, we propose a new imaging-based framework for organ-specific BA estimation. In this initial study, we focus mainly on brain MRI. As a first step, we introduce a chronological age (CA) estimation framework using deep convolutional neural networks (Age-Net). We quantitatively assess the performance of this framework in comparison to existing state-of-the-art CA estimation approaches. Furthermore, we expand upon Age-Net with a novel iterative data-cleaning algorithm to segregate atypical-aging patients (BA $\not \approx$ CA) from the given population. We hypothesize that the remaining population should approximate the true BA behavior. We apply the proposed methodology on a brain magnetic resonance image (MRI) dataset containing healthy individuals as well as Alzheimer's patients with different dementia ratings. We demonstrate the correlation between the predicted BAs and the expected cognitive deterioration in Alzheimer's patients. A statistical and visualization-based analysis has provided evidence regarding the potential and current challenges of the proposed methodology.