论文标题

使用遗传算法进行最佳参数估计的有效基于DWT的融合技术

Efficient DWT-based fusion techniques using genetic algorithm for optimal parameter estimation

论文作者

Kavitha, S., Thyagharajan, K. K.

论文摘要

图像融合在医学成像中起着至关重要的作用。图像融合旨在将互补信息和冗余信息整合到单个融合图像中,而不会失真或信息丢失。在这项研究工作中,使用遗传算法(GA)foroptimalalparameter(weight)估算估计inthththththefusionProcessareArimplected并通过多模型大脑图像进行了分析。使用DWT执行图像融合时缺乏移位方差,使用UDWT解决。提出的融合模型在DWT和UDWT中使用有效的,修改的GA来进行最佳参数估计,以提高图像质量和对比度。通过限制搜索空间,基本GA(像素级)的复杂性已在修改后的GA(特征级别)中降低。从我们的实验中可以看出,使用DWT和UDWT技术与GA进行融合以进行最佳参数估计,从而在保留信息和对比度的方面具有更好的融合图像,无论是在人类的感知和使用目标指标的评估中,都在没有错误的方面进行了融合。这项研究工作的贡献是(1)降低了使用GA进行融合(2)系统估算重量值的时间和空间复杂性,对于具有相似时间复杂性的任何大小的输入图像,由于特征级别的GA实现,并且(3)识别源图像,从估计的重量值识别为熔融图像造成更多贡献的源图像。

Image fusion plays a vital role in medical imaging. Image fusion aims to integrate complementary as well as redundant information from multiple modalities into a single fused image without distortion or loss of information. In this research work, discrete wavelet transform (DWT)and undecimated discrete wavelet transform (UDWT)-based fusion techniques using genetic algorithm (GA)foroptimalparameter(weight)estimationinthefusionprocessareimplemented and analyzed with multi-modality brain images. The lack of shift variance while performing image fusion using DWT is addressed using UDWT. The proposed fusion model uses an efficient, modified GA in DWT and UDWT for optimal parameter estimation, to improve the image quality and contrast. The complexity of the basic GA (pixel level) has been reduced in the modified GA (feature level), by limiting the search space. It is observed from our experiments that fusion using DWT and UDWT techniques with GA for optimal parameter estimation resulted in a better fused image in the aspects of retaining the information and contrast without error, both in human perception as well as evaluation using objective metrics. The contributions of this research work are (1) reduced time and space complexity in estimating the weight values using GA for fusion (2) system is scalable for input image of any size with similar time complexity, owing to feature level GA implementation and (3) identification of source image that contributes more to the fused image, from the weight values estimated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源