论文标题

分布漂移的扩散的定量热内核估计

Quantitative heat kernel estimates for diffusions with distributional drift

论文作者

Perkowski, Nicolas, van Zuijlen, Willem

论文摘要

我们考虑$ \ Mathbb {r}^d $上的随机微分方程。 - \ frac12 $。我们表明,SDE的Martingale解决方案具有过渡内核$γ_T$,并以$γ_T$的价格证明了上下热的内核边界,明确依赖于$ t $,而$ b $的标准则是$ t $。

We consider the stochastic differential equation on $\mathbb{R}^d$ given by $$ \, \mathrm{d}X_t = b(t,X_t) \, \mathrm{d}t + \, \mathrm{d} B_t, $$ where $B$ is a Brownian motion and $b$ is considered to be a distribution of regularity $ > -\frac12$. We show that the martingale solution of the SDE has a transition kernel $Γ_t$ and prove upper and lower heat kernel bounds for $Γ_t$ with explicit dependence on $t$ and the norm of $b$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源