论文标题
我的健康传感器,我的分类器:调整训练有素的分类器来标记未标记的最终用户数据
My Health Sensor, my Classifier: Adapting a Trained Classifier to Unlabeled End-User Data
论文作者
论文摘要
在这项工作中,我们提出了一种无监督的域适应(DA)的方法,该方法是没有直接可用的标记源数据的方法,而仅提供了对源数据进行培训的分类器的访问。我们的解决方案基于分类器的信念,仅迭代标签目标数据分布的高置信度子区域。然后,它迭代地从扩展的高信心数据集中学习新分类器。目的是将拟议方法应用于DA的任务,以实现睡眠呼吸暂停检测的任务,并根据患者的需求实现个性化。在一系列具有开放和封闭睡眠监控数据集的实验中,提出的方法应用于不同传感器的数据,用于不同数据集之间的DA。在所有实验中,所提出的方法的表现都优于在源结构域中训练的分类器,其KAPPA系数从0.012到0.242不等。此外,我们的解决方案应用于三个建立的数字数据集之间的数字分类DA,以研究该方法的普遍性,并允许与相关工作进行比较。即使没有直接访问源数据,它也可以取得良好的结果,并且表现优于几种良好的无监督DA方法。
In this work, we present an approach for unsupervised domain adaptation (DA) with the constraint, that the labeled source data are not directly available, and instead only access to a classifier trained on the source data is provided. Our solution, iteratively labels only high confidence sub-regions of the target data distribution, based on the belief of the classifier. Then it iteratively learns new classifiers from the expanding high-confidence dataset. The goal is to apply the proposed approach on DA for the task of sleep apnea detection and achieve personalization based on the needs of the patient. In a series of experiments with both open and closed sleep monitoring datasets, the proposed approach is applied to data from different sensors, for DA between the different datasets. The proposed approach outperforms in all experiments the classifier trained in the source domain, with an improvement of the kappa coefficient that varies from 0.012 to 0.242. Additionally, our solution is applied to digit classification DA between three well established digit datasets, to investigate the generalizability of the approach, and to allow for comparison with related work. Even without direct access to the source data, it achieves good results, and outperforms several well established unsupervised DA methods.