论文标题
创建和使用大量预算模型大气的网格,以快速分析恒星光谱
Creating and using large grids of precalculated model atmospheres for a rapid analysis of stellar spectra
论文作者
论文摘要
$。 $方法。$这些模型是使用Abacus I超级计算机和恒星气氛CMFGEN计算的。 $结果。$参数空间具有六个维度:有效温度$ t_ {eff} $,发光度$ l $,金属$ z $和三个恒星风参数:指数$β$,终端速度$ v _ {\ infty} $ v _ {\ infty} $,以及体积填充填充因子$ f _ {cl {cl} $。对于每个模型,我们还计算紫外线(900-2000 A),光学(3500-7000 A)和近IR(10000-40000 A)区域中的合成光谱。为了促进与观测值进行比较,可以使用羊毛蛋白3(i)速度在10到350 km s $ s $^{ - 1} $的速度中,使用10 km S $ s $ s $^{ - 1} $在旋转范围扩大合成光谱。 $结论。$我们还使用我们的网格展示了预先计算模型的数据库的好处。我们的分析成功地重现了原始研究的最佳拟合参数范围,尽管我们的结果有利于质量损失范围的较高端和较低水平的结块。我们的结果间接地表明,正如最近的理论计算和数值模拟所建议的那样,紫外线范围内的共振线受到速度空间孔隙率的强烈影响。
$Aims.$ We present a database of 43,340 atmospheric models ($\sim$80,000 models at the conclusion of the project) for stars with stellar masses between 9 and 120 $M_{\odot}$, covering the region of the OB main-sequence and Wolf-Rayet (W-R) stars in the Hertzsprung--Russell (H--R) diagram. $Methods.$ The models were calculated using the ABACUS I supercomputer and the stellar atmosphere code CMFGEN. $Results.$ The parameter space has six dimensions: the effective temperature $T_{eff}$, the luminosity $L$, the metallicity $Z$, and three stellar wind parameters: the exponent $β$, the terminal velocity $V_{\infty}$, and the volume filling factor $F_{cl}$. For each model, we also calculate synthetic spectra in the UV (900-2000 A), optical (3500-7000 A), and near-IR (10000-40000 A) regions. To facilitate comparison with observations, the synthetic spectra can be rotationally broadened using ROTIN3, by covering vsin(i) velocities between 10 and 350 km s$^{-1}$ with steps of 10 km s$^{-1}$. $Conclusions.$ We also present the results of the reanalysis of $ε$ Ori using our grid to demonstrate the benefits of databases of precalculated models. Our analysis succeeded in reproducing the best-fit parameter ranges of the original study, although our results favor the higher end of the mass-loss range and a lower level of clumping. Our results indirectly suggest that the resonance lines in the UV range are strongly affected by the velocity-space porosity, as has been suggested by recent theoretical calculations and numerical simulations.