论文标题

通过持续学习流媒体图神经网络

Streaming Graph Neural Networks via Continual Learning

论文作者

Wang, Junshan, Song, Guojie, Wu, Yi, Wang, Liang

论文摘要

图形神经网络(GNN)在各种应用中都取得了强大的性能。在现实世界中,网络数据通常以流方式形成。指代节点信息的模式的分布可能会随着时间而变化。 GNN模型需要学习无法捕获的新模式。但是,学习逐渐导致灾难性的遗忘问题,即历史知识被新知识的知识所覆盖。因此,重要的是训练GNN模型以同时学习新模式并维护现有模式,这很少有工作重点。在本文中,我们提出了基于持续学习的流式GNN模型,以便在每个时间步骤中逐步训练该模型,并可以获得最新的节点表示。首先,我们设计了一种近似算法,以根据信息传播有效地检测新的即将到来的模式。其次,我们结合了两个数据重播和模型正则化的观点,以实现现有模式整合。特别是,设计了针对节点的层次结构 - 体现样本采样策略,并得出了GNN参数的加权正则化项,从而实现了更大的稳定性和知识巩固的概括。我们的模型对真实和合成数据集进行了评估,并与多个基线进行了比较。节点分类的结果证明,我们的模型可以有效地更新模型参数并实现与模型再培训相当的性能。此外,我们还对合成数据进行了案例研究,并对我们的模型的每个部分进行了一些特定的分析,说明了其学习新知识并从不同角度维护现有知识的能力。

Graph neural networks (GNNs) have achieved strong performance in various applications. In the real world, network data is usually formed in a streaming fashion. The distributions of patterns that refer to neighborhood information of nodes may shift over time. The GNN model needs to learn the new patterns that cannot yet be captured. But learning incrementally leads to the catastrophic forgetting problem that historical knowledge is overwritten by newly learned knowledge. Therefore, it is important to train GNN model to learn new patterns and maintain existing patterns simultaneously, which few works focus on. In this paper, we propose a streaming GNN model based on continual learning so that the model is trained incrementally and up-to-date node representations can be obtained at each time step. Firstly, we design an approximation algorithm to detect new coming patterns efficiently based on information propagation. Secondly, we combine two perspectives of data replaying and model regularization for existing pattern consolidation. Specially, a hierarchy-importance sampling strategy for nodes is designed and a weighted regularization term for GNN parameters is derived, achieving greater stability and generalization of knowledge consolidation. Our model is evaluated on real and synthetic data sets and compared with multiple baselines. The results of node classification prove that our model can efficiently update model parameters and achieve comparable performance to model retraining. In addition, we also conduct a case study on the synthetic data, and carry out some specific analysis for each part of our model, illustrating its ability to learn new knowledge and maintain existing knowledge from different perspectives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源