论文标题
生物组织中模式和形式的机械模型:应力 - 应变方程的作用
Mechanical models of pattern and form in biological tissues: the role of stress-strain constitutive equations
论文作者
论文摘要
生物组织中模式形成的机械化学模型已用于研究各种生物医学系统,并描述了细胞及其局部周围环境之间的物理相互作用。这些模型通常由细胞密度的平衡方程组成,一个用于细胞外基质(ECM)的密度和一个描述细胞ECM系统机械平衡的力平衡方程。假设该系统可以被视为各向同性线性粘弹性材料,则通常使用线性粘弹性的开尔文 - VOIGT模型来定义力平衡方程,以表示ECM的应力 - 应变关系。但是,由于ECM成分的多方面生物形态性质,该模型无法有效地捕获流变学方面,因此,根据所考虑的生物组织类型,其他线性粘弹性的其他组成模型可能更适合。在这项工作中,我们系统地评估了生物组织中模式形成的机械模型中ECM不同应力 - 应变方程的模式形成潜力。通过线性稳定性分析获得的结果支持以下想法:捕获粘性流和永久集合(Maxwell模型,Jeffrey模型)的构型方程的模式形成的潜力远高于其他图案(Kelvin-Voigt模型,标准线性固体模型),这进一步由我们的数值模拟结果证实。我们的发现表明,需要进一步的经验工作来获取有关不同生物组织中ECM组件的机械性能的详细定量信息,以便为ECM的应力 - 构型方程提供模式形成的机械化学模型,以提供基础组织流变体的更忠实表示。
Mechanochemical models of pattern formation in biological tissues have been used to study a variety of biomedical systems and describe the physical interactions between cells and their local surroundings. These models generally consist of a balance equation for the cell density, one for the density of the extracellular matrix (ECM), and a force-balance equation describing the mechanical equilibrium of the cell-ECM system. Assuming this system can be regarded as an isotropic linear viscoelastic material, the force-balance equation is often defined using the Kelvin-Voigt model of linear viscoelasticity to represent the stress-strain relation of the ECM. However, due to the multifaceted bio-physical nature of the ECM constituents, there are rheological aspects that cannot be effectively captured by this model and, therefore, depending on the type of biological tissue considered, other constitutive models of linear viscoelasticity may be better suited. In this work, we systematically assess the pattern formation potential of different stress-strain constitutive equations for the ECM within a mechanical model of pattern formation in biological tissues. The results obtained through linear stability analysis support the idea that constitutive equations capturing viscous flow and permanent set (Maxwell model, Jeffrey model) have a pattern formation potential much higher than the others (Kelvin-Voigt model, standard linear solid model), further confirmed by the results of our numerical simulations. Our findings suggest that further empirical work is required to acquire detailed quantitative information on the mechanical properties of components of the ECM in different biological tissues in order to furnish mechanochemical models of pattern formation with stress-strain constitutive equations for the ECM that provide a more faithful representation of the underlying tissue rheology.