论文标题

从四个X射线预测中的介入式介绍性指导的深度学习基于介入的工具的重建

Deep Learning-Based Reconstruction of Interventional Tools from Four X-Ray Projections for Tomographic Interventional Guidance

论文作者

Eulig, Elias, Maier, Joscha, Knaup, Michael, Bennett, N. Robert, Hörndler, Klaus, Wang, Adam S., Kachelrieß, Marc

论文摘要

通常通过使用C-ARM系统获取荧光镜图像来执行微创干预措施的图像指南。但是,投影数据仅提供有关介入工具的空间结构和位置的有限信息,例如支架,导线或线圈。在这项工作中,我们建议在可接受的剂量水平下进行实时层析成像(四维)介入指导的深度学习管道。第一步,使用深层卷积神经网络(CNN)从四个锥形CT投影中提取介入工具。然后将这些预测重建并馈入第二个CNN,该预测将这种高度采样的重建映射到介入工具的分割。我们的管道能够仅从四个X射线预测中重建介入的工具,而无需先前的患者准确性。因此,所提出的方法能够克服当今介入指导的弊端,并可以通过提供有关介入工具的完整时空信息来开发新的微创放射学干预措施。

Image guidance for minimally invasive interventions is usually performed by acquiring fluoroscopic images using a C-arm system. However, the projective data provide only limited information about the spatial structure and position of interventional tools such as stents, guide wires or coils. In this work we propose a deep learning-based pipeline for real-time tomographic (four-dimensional) interventional guidance at acceptable dose levels. In the first step, interventional tools are extracted from four cone-beam CT projections using a deep convolutional neural network (CNN). These projections are then reconstructed and fed into a second CNN, which maps this highly undersampled reconstruction to a segmentation of the interventional tools. Our pipeline is capable of reconstructing interventional tools from only four x-ray projections without the need for a patient prior with very high accuracy. Therefore, the proposed approach is capable of overcoming the drawbacks of today's interventional guidance and could enable the development of new minimally invasive radiological interventions by providing full spatiotemporal information about the interventional tools.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源